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FOREWORD 

This report was prepared by North American Aviation, Inc., Space 
Division, under NASA Contract NAS9-4552, for the National Aeronautics and 
Space Administration, Manned Space Flight Center, Houston, Texas.with 
Dr.  F. C. Hung, Program Manager and Mr.  P. P. Radkowski, Assistant 
Program Manager. 
Structural Mechanics Division, MSC, Houston, Texas with Dr. F. Stebbins 
a s  the technical monitor. 

This work was administered under the direction of 

Thic report  is presented ir, eleven volumes for convenience in handling 
and distribution. A l l  volumes a r e  unclassified. 

'The objectix-e of the study was to develop methods and Fortran IV 
computer programs to determine by the techniques descTibed below, the 
hydro-elastic response of representation of the structure of the Apollo Com- 
mand Module immediately following impact on the water. The development 
of theory, methods and computer programs is presented -.s Task I Hydro- 
dynamic Pressures ,  Task I1 Structural Response and Task I11 Hydroelastic 
Response Analysis. 

Under Task I - Computing program to extend flexible sphere using the 
Analytical formulation Spencer and Shiffman approach has been developed. 

by Dr. L i  using nonlkear  hydrodynamic theory on structural portion is 
formulate& In order to cover a wide range of impact conditions, future 
extensions are necessary in  the following items: 

a. Using linear hydrodynamic theory to inclue.-2 horizontal velocity 
and rotation. 

b. Nonlinear hydrodynamic theory to develop computing program on 
spherical portion and to develop nonlinear theory on toroidal and 
conic sections. 

Under Task 11 - Computing psogczrn and tJser',. Manual were developed 
for  nonsymmetrical loading on unsymmetrical elasti.: shells. 
develop the theory and methods to cover rezlistic Apullo configuration the 
following extensions a r e  recommended: 

To fully 

a. Modes of vibration and modal analysis. 

b. Extension to nonsymrnetric short  time i-mpulses. 



C. Linear buckling and elasto-plastic analysis 

These technical extensions will not only be useful for -4pollo and 
future Apollo growth configurations, but they will also be oi value to other 
aeronautical and spacecraft programs. 

The hydroelastic response of the flexible shell is obtained by the 
numerical solution of the combined hydrodynamic and shell equations. 
results obtained herein a r e  compared numerically with those derived by 
neglecting the interaction and applying rigid body -pressures  to the same 
elastic shell. 
impact of the particular shell studied, the interaction between the shell and 
the fluid produces appreciable differences in the overall acceleration of the 
center of gravity of the shell, and in the distribution of the pressures  and 
responses. However the maximum responses a r e  within 1570 of those pro- 
duced when the interaction between the fluid and the shell is neglected. A 
brief summary of results is shown in the abstracts of individual volumes. 

The 

The numerical results show that for an axially symmetric 

The volume number and authors a r e  listed on the following page. 

The contractor's designation for this report  is SID 67-498. 
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Volume 11 

User's Manual 
For  the Unsymmetric Shell of Revolution Computer 

Programs Static and Dynamic 

ABSTRACT 

The unsymmetric shell of revolution programs described in this 
volume were developed a s  a basic tool in the static and dynamic analysis of 
shells of revolution having arbi t rary distribiition of stiffness subjected to 
arbi t rary loads and temperature. 

The analytical basis for the two computer programs, static and 
dynamic, is presented. The analysis is restricted to linear-elastic thin 
shell theory. The basic equations include the effect of shear  distortion. 
The analysis utilizes a Fourier series technique to separate the circum- 
ferential varia.tion. 
algebraic set  by the use of finite difference forms for  variations of the 
other variables. 
a direct matrix elimination procedure. 

The resulting set of equations a r e  reduced to an 

These algebraic equations a r e  then solved numerically by 

The computer programs were written in FORTRAN IV. In order  to 
keep input data a t  a minimurn extensive use of call  function subroutines 
have been used. 
by the user. 

Call functions a r e  subroutines which a r e  coded and compiled 
This eliminates the necessity of large tabular inputs. 

Solutions obtained from the Dynamic Unsymmetric Shell program are 
the displacement and rotation time histories. 
a r e  the histories of internal forces and moments. 

-Us0 included in  the output 

The solutions obtained from the Static UnsymmeLric Shell program 
include displacements, rotations, internal force and moment resultants, 
and s t resses .  This output is presented in tabular form. 
programs should be forewarned that the programs a r e  only a tool and 
insight must be used in  i-elating results to an actual physical problem. 

The users  of these 

This volume is intended to supply the information necessary for the 
use of both the Dynamic Unsymmetric Shell program and the Static 
Unsymmetric Shell program, Detailed descriptions have been included i p ?  

this volume to aid the user in performing extensions and modifications of 
these programs. 
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1 , O  THEORY 

1 . 1  INTRODUCTION 

This section presents ilie analytical basis of the computer prugrains. 
The dynamic response problem is pt esented and the specialization for'the 
static analysis is made. 

The analysis is based on a modified form of the general first order  
linear shell theory of Sanders. 
include transverse shear distortion, see Appendix 1. 13. 1 The modified 
equilibrium equations a re  extended to  include t h e  dependence by. 
D'Alernbert's principle. 
the circumferential direction and a system of finite difference approximations 
a re  used to reduce the partial differential equations to an algebraic set. This 
set  is solved by using a direct  matrix elimination procedure. 

These equations have been modified to 

Fourier  analysis j s  used to separate variables in 

. The material presented in  this section is an  extension and parallels 
of the work of Sanders', Budiansky and Radkowski2, and Johnson and Greif 3 . 
The notation used is identical to that of Reference 2 except where noted. 

1.2 NOMENCLATURE 

Fourier Coefficients 

mj mrtij 1Cmj , C 

= displacements and rotations 

= loads 

= temperature induced force t e rms  

= force resultants, modified and 
effective 

= stiffnesses 

= elastic focndation, damping, mass 

I 



1 f5k+l,5j+l f5kt5,5jt5 

g5k+l,5j+1 R5k+5,5j+5 

h5k+l,5j+l h5k+5,5j+5 

k5k+l,5j+l k5k+5,5j+5 

05k+l,5j+l cu5kt5,5j+5 

P5k+?,5j+l P5k+5,5j+5 
I 

k p5ktl '5k+5, Qk l""Q5 

r 5ktl ,5j+l  '5k*5,5j+5 

'5kt1,5j+l * . S5k+5,5j+5 

a5ktl . . . - a5k+5 

Coordinates and Constants 

,= elements of F, G, H, K, a, P,p, f 
R, S, anda 

= coordinates 

= normal distance from shell axis 

= meridional shell coordinate 

= refe tence constants 

= noiidimensional curvatures 

= displacements and rotations 

= stresses  

= strains I 
= isotropic stiffness functions 

= material. properties 

= loads 

= temperature change 

- 2 -  



Matrices 

force resultants, modified, effective, 
and temperature induced 

5K x 5K order  

5 K x  1 order  

Dummy 

th k Fourier component 

The shell theory on which these programs are based is restricted to 
. -  linear, elastic, thin shell, theory.. 

The thickness of the shell  a t  any point is small compared to  the 
other dimensions. 

Deformations of the shell a r e  small  compared to the smallest 
radius of curvature. 

Al l  material  points of the shell deform elastically, obeying 
Hooke's law for transverse isotropic materials. 

The shell is "complete, I '  i. e . ,  its only boundaries are at 
meridian ends and inner ahd outer surfaces. 

The class of shells considered has  a surface of revolution 
reference surface which is within o r  in close proximity of the 
shell walls such that /E&d& = 0, 

The parameters of stiffness, e .  g . ,  in-plane stiffnesses are 
permitted to vary in both the meridional and circumferential 
directions. 
Young's modulus, etc. ,  a r e  permitted to vary in  both the 
meridional :And circumferential directions. The stiffness 
parameter 's  variation in the circumferential direction is restricted 
to those with a plane of symmetry. 

Implied is that parameters such as thickness, 

Arbitrary loads and temperature tlistribu%ions are permissible. 
Excluded are problems with therrnal distributions such that 
limitation (e) is not satisfied. 

- 3 -  



(h) The effects of transverse shear is included. 

1.4 

(i) Instability is not considered. 

(j) Distributed mass ,  elastic foundation, and external damping is 
included. 
a s  the stiffness parameters (f). 

These distributions have the same symmetry conditions 

SHELL COORDINATE SYSTEM 

The geometry of a shell is defined entirely by specifying the form of 
the reference surface and the thickness of the she l l  at each point. 
venience, the shell coordinate system and g v  I-iietrical relations used in  
Reference 2 will be adopted here. 
a surface of revolution and is selected a t  a convenient location, within or in 
proximity to the shell walls. 
surface is defined by 

F o r  con- 

The reference surface is assumed to  be 

The first fundamental form of the reference 

dF2 = ds 2 i r 2 ,  00  2 

where d z  is a line elemcst on the surface and's and 8 denote orthogonal 
coordinates selccted along line s of principal curvature. 

- (1.1) 



The generator c . 3  the reference s i r f ace  is defined by r(s) where r is 
the distance from the axis of revolutlon. The coordinate s is a measure of 
the meridional distance along an axisgmmetric reference surface, and 0 is 
a circumferential angle, as shown i.n Figure 1.1. The Coordinate, 5 ,  is 
selected a s  a measure of the ncrmai outward distance from the reference 
surface ( 5  = 0) .  The principal radii of curvature are 

Introduce the nondimensional meridional coordinate 
reference iength; then, with P = r/a,  the nondimensional curvatures 
u) 5 = a/R,  and “6 = a / R e  (.ai-. be found from the formulas 

= s / a ,  where a is a 

where 

y = P / / P  

a( 
d t  

In these equations, and henceforth, ( 1’ = 

Finally from the Coaazzi relation we obtain 

and the relation 

1.5 EQUATIONS OF MOTION 

The general equilibrium eqw.ations for an arbi t rary shell based on the 
These first-order linear shell theory of Sanders a re  given in Reference 1. 

equations a re  modified to include the effect of transverse shear .distortion 
by the  procedure suggested by Sanders. *’* These equilibrium equations are 
extended to equations of motion by use of D’Alembert’s principle. These 
equations specialized for a shell whose reference surface is a surface of 
revolution a r e  given 2 5 ,  

... 

“See Appendix 

- 5 -  



( 1 . 6 . 1 )  

where 

M ( 6 ,  0)  = p (E, 6) h (5, e)  (mass/unit area of shell) 

(mass moment/unit area of shell) 
p ( s ,  e) h3 ( 5 ,  e) 

12 
M (5, e)" = 

(5, e) = external damping coefficient 

( 6 ,  0)  = spring constants 

C( 

K( 

- 6 -  



Where the components of membrane force, transverse force and 
moment (about the reference surface) per unit length, and load per unit 
a rea  (assumed to be applied at the reference surface) a r e  shown in 
Figure 1-2. 

Figure 1-2. Sign Convention and Coordinates, Moments, Forces ,  
Loads, Displacements, and Rotations .. 

In the Sanders' f i rs t -order  theory the inplane shearing forces Nge and 
Not as  well a s  twisting moments Mke and Me6 a re  not handled separately, 
but instead a r e  combined to form modified variables 

and 

It is necessary when incl-iding the effects of t ransverse shear  distortion 
to consider five equilibrium equations. 
shear  deformation is neglected the shear  forces a r e  .eliminated and resulting 
equilibrium equations a r e  reduced to the consideration of three equations. 
The neglecting of t ransverse shear  s t ra ins  implies that normals to middle 
surface of the shell remain normal after deformation. 
introduced by this assumption naturally depends on. the magnitude of trans- 
verse  shearing forces and shear  rigidity of the shell. 
loads and shells having low shear  rigidity, shear  deformations may b.e 
comparable to bending and axial deformations and cannot I>c ignored. 

Recall in Reference 2 that when 

The degree of e r r o r  

For  discontinuous 

- 7 -  



- 1 .6  FORMULATION INTO SOLUTION VARIABLES - 4 
li' 

The equations of motion a r e  now expressed in terms of the solution 
variables, displacements and rotations. 

The force and moment expressions in the equations of motion are 
determined by evaluating the following integrals through the thickness 

(1.10) 

where in the above integrals we have neglected terms of order </R, R is 
the minimum radius of curvature. The s t resses  used above a r e  defined as: 

a r e  normal stresses;  acting on the 
faces 

up ue 

i s  an in-plane shear s t ress  acting 
parallel to the reference surface 

a r e  transverse shear s t resses  acting 
normal to the reference surface '55"ek 

By assuming that plane sections before remain plane after deformation, 
the strkins a t  a distance 5 from the reference surface can be csprcssed in 
te rms  of the reference surface strains a s  follaws: 

( 1 . 1 1 )  

where t e  and c a r e  the strains of the rcfc-rc>ncc surCncc* ant1 c t ( ,  (<,I  is 
one-half the usual engineering strain. 50 



The stress  -strain-temperature relations for an isotropic material 
-. K 

\ ,' 
are 

1 I - E  
IT'S= IC( t vce  t ( k g t  vke)  - Q (1 t w )  T 

I E 
t ( k e +  wke) - Q (1 + W )  T 

e 1 - v  
(1.12) 

where 

E G =  
2(1 t v )  

Substituting these equations into Eqs. 1. 10 and employing appropriate 
integrations through the thickness yield the following stress/resuEtants-strain 
relationships. 

- 6 .t B3ce t C l k g +  C3ke - NT N - B e  E 
Ne = B ~ c  + B c + C3k + C2kg - N e  T 

s 2 e  s - 
N g e  = G1 € & e  G12kge 

Q = G Y  5 2 55 
= C E t C E t D l k S t  D3ke - M T  M s  1 6  3 e  

M = C t C2~e + D3k5 t Dzke - M e  T e 3 %  
- 
Mt,e = G12 'get G13kge 

Q = W e 5  

(1.13) 

- 9 -  



where in  the above equations the shell stiffnesses a r e  given by 

(1.14) 

(1.15) 

For  the case of discontinuous material  properties through the thickness 
the integration is taken piece -wise through the thickness. An additional 
assumption of constant Poisson’s ratios through the thickness is made. 
Therefore the isotropic nature of the layers a r e  retained in  the stiffness 
parameters.  The shell stiffness and thermal loads take the form, 

Ed<, D1 = D2 =- D3 = - . /EC2dC 2 v 
1 - v .  2 

B3 . 
B1 = B2 = - = V 

1 - v  

- 10 - 



It follows that because of the reference surface choice, namely that the 
condition $E gd = 0 is satisfied, the integration takes the form 

(1.17) 

F e n c e  surface 

The reference surface strains and bending distortion t e rms  may be, 
defined in  te rms  of displacements and rotations by the following expressions. 
The membrane strains of the reference surface a re  given by 

(1.18) 
E O = -  1 [- 1 3 s  au yuc+ wew] 

a P ae 

where U, V, W a r e  displacements in the 5 ,  8 and 5 directions respectively. 
Transverse shear strains a r e  given by 

(1.19) 

where ct Q, a r e  rotations. S'  e 



The bending distortion terms are given by 

(1.20)  

Substituting equations ( 1 .  18, 1 .  19, 1 . 2 0 )  into equation 1 .  13 the force 
terms in the equations of motion can be expressed ir. terms of.t.he 
displacements 

(1.21) 

By employing the relations, equations 1 . 2 1 tlic C(1tlil tioiis o f  tllotiuii 

can be expressed in terms of the dependent Vit riablvs, tlitsI)l;ic-cinciits anti 
rotations. 

’- 1 2 -  



1. *r CIRCUMFERENTIAL VARIABLE SEPARATION 

The analysis utilizes a Fourier approach which will permit separation. 
of variables and yie: 
involves expanding of the pertinent variables in Fourier series with 
appropriate normalization to pmvidL nondimensional Fourier coefficients 
of roughi;- comparable magnitudes for  different variables. 
ho he a reference s t r e s s  level, Yomig's modulus, and thickness, respectively, 
solutions for the field equations a re  sought in the form 

a more tractable set  of shell equations. The procedure 

Let2ir.2 uo, E,, 

vn ( 6 ,  t) Sin n9 
n= 1 

These Fourier expansions a r e  consistent with loadings '* '. J form 

(1 .22)  

- 13 - 



The above Fourier expansions a re  not the inust general form. The 
expansions g 5' q5 a re  symmetrical expansions about 8 = 0. For  fu1' 
generality, they must be augmented by additional sine ser ies  expandons. 
The form qe in turn would be supplemented by cosine series. 
the ser ies  expansions for  displacements and rotations must be augmented for 
the general case. 

Consistently, 

Expansions for the temperature distributions may be described in 't 
similar manner; however, since the thermal coefficients and You1~t's ' 

modulus can vary in the circumferential direction, it will be more convenient 
to expand the thermal load in Fourier ser ies  as follows 

N T = coho 2 tz Cos ne 
n=O . 

(1.24) 

Where the Fourier co. iponents t: and m: a r e  given by 

Since the stiffness mass,  external damping and elastic foundation 
parameters a re  variable in the circumferential directions, these wi l l  a lso 
be expanded in a Fourier series.  
extensional stiffness parameter is of the form 

For  example, the expansion for the 

co a3 

B = 1 bj Cos je t 2 b. Sin j.0 
~ j = l  3 

, j = O  
(1.25) 

In many problems, there exists a plane of symmetry with respect to 
planform geometry. See Figure. 1-3. . 



Figure 1. 3. Stiffness Profile 

A plane of symmetry i s  assumed here. The coefficients of B, Viz., 
b. are found by integrations of the form 

J 

(1.26) 

The Fourier expansions of the shell stiffness parameters (Eqs. 1.14), 
consistent with previous formulation are given by 

B, = Eoh, 2 bmj ( 6 )  cos je 

Dm = Eohz 2 dmj-(g) Cos je Bending Stiffness (1.27) 

' 

Inplane Stiffness 
j=O 

m 

j = O  

ctn = External Damping 
j = O  

f 15 - 



. .  CD 2 kmj cos je Elastic: ' Foundation 
j . . O  . 

(1.27) 

Km= 

Substitution of the displacement and rotation series expansions 
(Eqs. 1.22) and the above stiffness expansions into Eqs. (1.21) and 
employing the proper trigonometric identities yields the following series 
expressions relating forces (moments) in te rms  of the Fourier coefficients 
of the displacement variables and stiffness 1x1 I-ameters: 

(1.28) 

- l b  - 



The translational inertial force terms a r e  expressed as 

r 7 

The translational damping force is expressible as 

(1.29) 

(1 .30 )  



The translational elastic foundation force is expressible a s  

= 2 ( $ k’;j wj ) Cos k€l 
k=O j=o 

K5w 

The stiffness recursion relationships above a r e  described in the form 

where the specific coefficients of interest  (dropping k. J superscript) a r e  
given by 

In the above expressions b (m) is defined as 

(Wee Appendix 1. 2 (multiplic.ation of se r ies  esprcssions) for i t  t n o i - c  tlt*ta iletl 
description of Akj and AkJ. ) 

- 18 - 



Substitution of the s t ress  resultant expressions and dynamic force 
resultants (Eqs. 1:.'28 - 1.31) into the shell equilibrium equations (Eqs. 1.6) 
yields five finite ser ies  expressions in the circumferential coordinate relating 
the Fourier coefficients uj, v., W., @(j and @e. of the displacement and 
rotation variables. F o r  praciicai considerations we truncate the series 
solution of the dependent variables to K te rms  in the Fourier component. 
Employing the appropriate orthogonality relationships of Fourier series to  
these equilibrium expressions yields a syst2m of 5K ordinary differential 
equations relating the 5K unknown Fourier coefficients. These equations 

J 

a r e  presented 
a s  follows: 

in a form amenable for  computer programming and are given 

I/ I f5kt1,  5 j t l -  u. J t 

j=O 

h5kt e, 5 j t l  "j '* . ' h5kt e ,5j t5  6 83 . +  

"5kt & 5 j t 5  & t  e j  

(1.33) 

where 

B = 1, 2, 3, 4, 5 

k , j  = 0, .... , K -  I 



lvliere the f ,  g,  h, k, cy and p coefficients a r e  clcscribed in Appendix 1-B. 
(It should be noted that the form of the above equations is i n o w  complicated 
than was obtained in Rekrence  2 for analysis o f  shells of rcvolution. 
complexity a r i s e s  from the fact that the equilillrium equations cannot be 
decoupled for each Fourier  component of displaccrnent variables for the 
case oi unsymmetric shell. ) 

This 

The above equation can be conveniently written in matrix form as 
follows : 

lI 
F e  i- Gz' t  (H + K) z = c y z  t p z  + p (1.34) 

where F, G, H, K, CY, 

These a r r ays  are defined as, 
are square a r r ays  atit1 z ,  p are'column ar rays .  

F =  

H =  

f12 

h12 

.. 

. 

12 

. 

1 i 
] 

G =  

P 

g12 

kl 2 

I] - 
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z =  

v 

=1 

22 

z3 

'k 
e 

The elements of the F, G and H, K, 0 ,  p, &:nd p matrices a r e  given 
in Appendix 1.13.1 and a r e  presented there ' in  a format which is designed 
to ease computer programming. The coefficients of P a r e  the Fourier  
components of the applied external load and a r e  known quantities for a- 
specific loading case. 

The more general case of shells having arb i t ra ry  distribution of 
stiffness, loads, damping, and elastic foundation can be considered in the 
same manner a s  the case of plane of symmetry of stiffness and loads. In 
this case the total Fourier ser ies  representation of all  the variables, dis-  
placements, rotations, stiffness and loads, must be carr ied in the analysis. 
The analysis wil l  follow the same format of the special case formulated 
previously . 
Boundary Conditions 

Consistent with Sanders ' equilibrium equations, the boundary conditions 
for the specification of the forces o r  displacements, or  constraint between 
them a r e  described below. On the edge where 6 = constant (i. e . ,  6 = 0, and - 
5 = s)  

where  

(1.35) 



These conditions can.be expressed in matrix form by, 

Condition a t  Boundary m i  A i  li 

- -  
Ry 4- is = t 

Displacement Prescribed 

Force Prescr ibed 

- -  
where y ,  r ,  a r e  column matrices and 52,  A a re  appropriate diagonal 

0 1 C1 C1 = value of dkplacement 

1 0 C2 C2 = valuc of force 

matrices 

1 Constraint Condition 

. o  w2  
w 3  
O “4 

C3 0 C = constant relating force 
a ntl displace me nt 

3 

t W ,5 I 

(1.36) 

The logic which connects 5 ,  -x, H and the conditiom desired a r e  given 
in the following table: 

Matrix Elements 

For example, is @g is given as  a boundary condition then X4 = 1, ~34 :- 0 and 
14 is the prescribed value of @E. 
appropriate reference constants. 

Note Ci is nonclimcnsioiializcd with tlic 



It will be convenient to expand forces and moments in Fourier  series 
in  manner consistent with the previous developments. Letting 

(1.37) 

The above series expressions together with Eqs. (1 .21)  a r e  substituted 
into Eq. (1.36) and the circumferential variation separated, yielding the 
fcllowing matrix form for the relationship of the Fourier coefficients. 

Qy thz = l (1.38) 

where 

- Y i  - 



A =  

It will be desirable to  express  boundary conditions in t e r m s  of z .  
substitution of Eqs. (1. 37)  in Eq. (1.27) with appropriate orthogonality 
orerations yi'elds a se t  of recursion expressions relating Fourier  ,-nefficicnts 
of forces and moments to the displacement and stiffness coefficients. 
relationships a r e  given by 

The 

Thc)sc 

' '5kt1, 5j t2  "j '5k+l, 5 j t3  "j .'. SSk+l,5j14 'tj 

S5kt l ,  5 j t5  'ej]  + a5kt l  
(1. 3 0 )  



v *  t 6 w t s  '5kt4,5j+2 J Sk.+4,5jt3 j 5kt4,5j+4 ' S j  

aT 5k+4 

v.'t r 

1 ' +  s5kt4 ,5 j t5  j 

' 

- %l [ '5kt5,5j+2 J 5k+5,5jt5 6 j  ' '5kt.5i5j.t-l "j 
j = O  

+ S5kt5,5j+2 "j 

mke - 

\ 1 s5kt5 ,5j+4$gj  ' '5k/5,5j+5 *ej 

. where 

k =  0, 1, 2, ... K - 1 

Coefficients a r e  given in Appendix 1-3. 

Equation 1. 39 can be writter in matrix notation as 

(1 .40)  
I 

y = R e t  Sz t a 

Hence, the boundary conditions (1.38) become 

(1 .41)  
1 

RRz t ( A t  Lis) z = I? - \?a 

The form of Eq. (1.41) is modified i f  the slie11 nas a pole (i. e. , r = 0 )  

because th - coefficients of the differential equationo become singular for 
t h i s  case. 
(Reference 5 )  the conditions supplied at  the pole are: 

Following a similar limiting prcl:,ess a s  described by Creenbaum 

For Focrier index = 0 

(1.42) 
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(1.42) 

1.8 FINITE DIFFERENCE FORMULATION IN THE MERJDIONAL 
VARXAB LE 

In a manner similar to  that described in Reference 2 the partial 
differential equation in the matrix form (Equation 1.34) is reduced by a- 
system of finite difference approximations. 
coordinate Df the Fourier coefficients a r e  described point-wise in Eq. (1.34). 
The following a r e  finite difference forms for the partial differentials in  the 
meridional coordinate a t  interior points. 

The variation in the meridional 

(1.43) 

where A is the increment along & and subscripts denote the discrete value of 
the function taken. 

The forms a t  boundary points (initial) 

- (;)l == 1 (3fl - 4f2 + f3)  

terminal 

t 4fN,1 -I- 3f ) (s) N =a- fN-2 N 

( 1  -44)  

(1.45) 

The result of the application of the various finitci cliffcrcncc forms 
can be stated compactly as the following set  of equations: 
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Where 

A, = - R,Ro 

Bo = 2 -R 510 
D o  

Co = A, -I- RoSo - 3 L  ClO R, 
2A 

the subscript ( 0 )  refers to the conditions at s = 0.  

F o r i  i: 0,  N 
2Fi 

A'. =- + Gi % A  
- 4Fi 

B. =- f 2 0  (Hi i- Ki) i A  
2 Fi 

A Gi ci =- -  

gi = 2Api 

Finally for i = N or conditions at S = 's 

(1.46) 

(1.47) 

(1.48) 
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I .  9 FINITE DIFFERENCE FORMULATION 1N THE TIME V A R I A B L E  -.<- 
I \  

By the use of dilierknce equations the above differential equation in 
matrix form m a y  be transformed into a seL o f  algebraic c’cluations involving 
the variable zi at  successive values of time. 

The most commonly used a r e  the central  difference forms;  however, 
from a numerical stability aspect, the difference forms of Houbolt 3, 4 a r e  
used. These forms a r e  

2zj - 5zj-l + 4zj-2 - 2 j -3  z =  
b2 

(1.49) 

(1.50) 

Where the subscript j re fe rs  to the time interval j = 0, 1, 2, . . . and is the 
time inprement. 

Introducing these expressions in Eq. 1.46 results i n  the following se t  
of algebraic equations for the shell responsib nroblem. 

(1.51) 



In the real  problem no values of z i  exists for 1ess.than zero. The 
assumption that z i  does’sxist before t = o is a means of allowing the 
recurrence from Eq. (1.51) to apply a t  the origin a s  well as  la ter  values of 
time. Furthermore,  no violation i s  made a s  long a s  the initial conditions 
o f t  = o a re  satisfied. 

To obtain values for fictitious te rms  j = -1, -2 a procedure similar 
to that described by Houbolt ‘is used. 

.L * cation of BT, j, gi, 
The procedure will require a modifi- 

for j = 1, 2. 

The difference equations for  the first and second derivatives at the 
third increment of four successive increments a r e  given by 

I 
Gi, = G  ( 2 ~ ~ , ~ + 1  3zi,j - 6zi , j-1 zi., j -2) 

Applying the equations at  t = 0 ,  i. e. ,  j = o 

(1.52) 

(1.53) 

The initial conditions are that the displacements and velocities are pre-  
scribed at t = 0. 
condition can be established, i. e. , acceleration immediately following 
application of the initial forces. 

By application of Newton’s second law, a secondary initial 

These conditions are 

2. - 
1, o - di, o 

z .  = v. 
1,o 1,o (1.54) 

Where di, o, vi,  o, ai, a r e  column n matrices formed of the respective 
coefficients ,of the  Fourier expansions on 6 of the initial displacements, 
velocities, and accelerations at  the meridional location i. 
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Substitution of these values into Eq. (1.53 ) yields the following relations 

Substitution of these relations in  Eq. (1.50) for j =. l  yields the 
following change in the definitions of Eq. (1.52) 

* Bi, = 6Bi t 1 2 4  6 1  a. t 6Api 

( I .  56) 
g i , I = 6 g i +  * ( 1 2 $ @ i + 6 P B i ) d i , o t  ( 4 A 6 4  - 7 6  7 2  A/3 i )a i , o t  

(12Aa. t 4A6pi) vi, 
1 

Substitution of definitions Eq. (1.50) for j = 2 yields the following 
change in definitions of Eq. (1.52) 

(1.57) 

The set  of Eq. ( 1 . 5 2 )  and the gdditional definitions at the first two time 
intervals Eqs. (1.56, 1.57) is now the algebraic s ta temxt .of  the dynamic 
response problem. 

1.10 MATRIX SOLUTION OF THE DIFFERENCE EQUATIONS 

The set of matrix equations defined in Eqs. 1.51, 1.56, 1.57 will be 
solved by the same procedure described in Reference 2. 
3s essentially a Gaussian.elimination performed on the partitioned arrays.  
A slight modification of the elimination procedure described in Reference 6 
is used here. Considering the first and second equations of Eq. (1.52) a t  
the jth time interval 

This procedure 
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The matrix solution of these difference equations a r e  solved by the 
By defining the s ta r red  quantities, 

)+, without the s ta r  the numerical procedure for the static analysis is 
prc ,edure described in Section. 1. 10. 
( 
completely defined. 
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1.13 APPENDIX 

1.13. 1 Modification ?f Sander's Equations 

Virtual changc in the strain energy within C 
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Expanding t - a (cuy) 
0s 

Substitute and Group. 
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1.132 Multiplication of Series Expaiisions 

The relationships Anj and Anj used in  the text a r e  found by multiplying 
term by t e rm the ser ies  expansions of stiffness and s t ra in  and noting a 
recurring sequence of the resulting expres s i w s  

n= 0 

where 

-1  m < O  

d ( m ) =  0 m = O  I t 1  m > O  

1 J3.3Coefficients - 
Stiffness parameters related in  an isotropic 11>iLlUlt'r 

B1 = B2 = 3 
V 

D3 I)1 = D2 = -  V 



‘13 

z f 5 i c t l , 5 j t l  

f 5 k t l ,  5j+4 

‘5kt2,5jt2 

f5kt2 ,5 j t5  

f5kt3 ,  5jt3 

f5kt4,  5 j t l  

‘5kt4, 5 j t 4  

f5kt5,  5jt2 

f5kt5,  5jt5 

‘5k+l,  5jt1 

6 5 k t l ,  5jt2 

& 5 k t l ,  5jt3 

g5kt  1 , 5 j t 4  = o  
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= + - - - ( C L ~  h2k - be) GI3 kj 
g5kt l ,  5jt5 4 P  
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2 2 k  kj h kGkj 
&5kt4,3j t5  P 3  2 P 1 3  

= h - D  +--- 

2 - h k kj x ~ ) I D k j  = -  P 3  
- --- 

g5kt5, 5j t4  2 P 13 

- A' kj' $ yGz 
'5kt5,5jt5 - 2 G13 



- -!O - 



= +LGkJ  
h5k+5, 5j+3 P 3  



= B Y  r 5k+l,Sj+l . 

= o  5kt1, 5j+4 r 

- 1 kj X2 2 kj 
r5kt2,5jt2 - -G1 2 8 - " 5 )  G13 

kj 
5kt3,5j+3 = G2 r 

5kt4,5j+l = r 

5kt4,5j+4 r 

5kt5,5jt2 r 

= lGkj 
5kt5,5j+5 2 13 

r 

S = YB? 
5ktly5j+l 

k kj 
S 5ktlt5j+2 = 7B3 

'5ktlY5jt3 = W E B ~  t wBB$j 

= o  5kt 1,5j+4 S 

S 5kt 1 5jtS = o  
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Y kj A2 
2 

S - - --GI i -g-y ( w e  - C E  
5 k t 2 , 5 j t 2  

s - - ----(a9 A2 k 9 w g ) G z  
5 k t 2 , 5 j t 4  4 P  

s 5kt3,5jC4 

s 5 k t 3 , 5 j t 4  

s 5 k t 4 , 5 j t l  

'5k+4, 5jt2 

S 5 k t 4 , 5 j t 3  

'5kt4 ,5 j t4  

S 5 k t 4 , 5 j t 5  

s - V & i  
5 k l 5 , 5 j + 5  2 13 

- 4 5  - 



5k+ 1 
a 

5kt4 a 

All  other r ,  s, a are equal to zero. 



2 . 0  GENERAL DESCRIPTION OF COMPUTER P.?OGRAMS 

2 . 1  INTRODUCTION 

Both the Static and Dynamic analysis described in Section 1.0 are 
programmed for solution on the IBM 7094 digital computer using the IBM 
FORTRAN IV code. 
computer programs. 
a r e  outlined. 
for the best utilization of the programs a r e  described. The detailed 
description, the machine program, input instructions, flow diagram, sample 
data sheets, etc. , a r e  given in Section 3. 0. 

This section wil l  give a general description of the two 
The scope and limitations of the computer programs 

The necessary quantities in selecting a mathematical model 

2 . 2  PROGRAM CAPABILITIES AND LIMITATIONS 

Before describing some oi the general program characterist ics,  it 
will perhaps be worthwhile to  l ist  some of the capabilities which a r e  not 
generally present in other shell analysis programs. 
l is t  a r e  limitations in the program that have resulted due to  theoretical 
restrictions, computer storage capacity, economic considerations, etc. 

Also included in this 

a. Shells having meridional and circumferential variation in  the 
stiffness properties can be analyzed. 
variation must have a property of symmetry about some plane, 
6 = constant (constant = 0). 

The circurriferential 

b.  Static shells can be subjected to loads and temperatures which 
may vary me ridionally and circurnferentially with the limisation 
that these distributions must exhihit the same property of 
symmetry a s  the stiffness. 
the dynamic response of shells must have the same conditions 
on the special distributions and also can vary arbitrari ly in time. 

The time dependent loadings for 

c.  Fo r  static shells, elastic foundations can be considered. The 
distribution of these parameters  a r e  subject to  the same 
condition cf symmetry described f o r  stiffness. 
respG b -  - , both elastic foundations and external dampings a r e  
considered. 
conditions imposed on the stiffness parameters.  

For the dynamic 

These a r e  also subject to  the same symmetry 
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d. Shells'analyzed must have a surface of revolution reference 
surface. 
reference surface for  these computer programs, i .  e ,  , the section 
prroperties must be symmetric about the reference surface 

The middle surface of the shell has heen taken a s  the 

e. User compiled call functions a r e  used in place of tables to input 
data of a 2 and 3 variable nature. 

f .  As  many a s  100 spacial integration inte 1s can be considered. 

g. The Fourier expansions can be taken to  19 terms. 

2 . 3  SIGN CONVENTIONS AND DLMENSI9NS 

The 'sign conventions used in  the programs a re  illustrated in Figures  
(1. 2 ,  1 .3)  in Section 1.0. 
membrane forces N 5, N e  are 'positive when they tend t o  produce tension 
and negative when they a r e  in compression. 
positive in sign when they tend to produce tensile s t resses  in  the inner s u r -  
faces and compressive s t resses  in  the outer surface (see Section 2.4) .  The 
extensional displacement ut  transverse deflection w, and meridional 
rotation @g, a r e  positive when the 6 and 
respectively. 

.To augment briefly the s t resses  u ~ ,  ue and 

The moments.ME, Mg &re 

coordinates a r e  increased 

In using the program, all data specified must be dimensionally 
con si st ent . 

2 .4  REFERENCE,  INNER, AND OUTER SURFACES 

The reference surface 5 = 0 is chosen such that the requirements of 
The cross  sectional properties are then limitation ( 6 )  above be satisfied. 

evaluated based upon this reference surface. 
substantial simplification i s  obtained when specifying key geometric functions 
(2. g . ,  p ,  y ), if the reference surface is chosen according to convenience 
anywhere within the shell wall. 
shoilld be evaluated systematically along the lines discussed in Section 1. 6 
Eq. 1. 17. 

A s  discussed in 1. 15, a 

However, the shell stiffness parameter 

It will be convenient to  refer  to  inner and outer surfaces of the shell. 
One can keep the inner and outer surface definiiirrns clear b.! remt:mbl:ring 
that in direction of increasing value of 6 the outer surlace is on the lclt and 
inner surface is  on the right when the geometry is drawn with axial c1is;tance 
increasing from top to  bottom and radial distance from icCt to ri::lii i i s  

shown in  Figure 1.1. 



2. 5 GEOMETRY (GIN) 

Geometric parameters  must be defined at each station location. The 
w e  are defined in the " 4  ' sign convention for  the curvature parameters,  

figures below.. 

In order  to  assisi the analyst in  defining the set  of geometry parameters  with 
a minimum number of inpat parameters,  several options for  specific classes 
of geometries are made available. 
their  identifying code number (GIN). 

The optio:is a r e  described below with 

2. 5. 1 Cone-Cylinder Option (GIN) = 1. 0) 

This geometry option may be specified for  a.complete range of 
regional configurations generated by a straight line, e .  g. , circular plates, 
divergent cones, cylinders and convergent cones. 
parameters a r e  required. 
follows: 

A minimum of 3 input 
The input parameters required a r e  defined as 

1. RA1 - Radial distance from axis of revolution to the first 
station (i  = 1) of the region. 

2. AXL - meridional length of shell. 

3 .  ANX - angle the generator makes with the axis of revelation. 

Figure 2.  3 illustrates the geom.et::ic parameters used in describing 
the cone cylinder optioc. 
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Figure 2 .1  Cone Cylinder Geometry 

. 
Both-RA1 and AXL are positive quantities. The parameter ANX i s  

gi'ven in,degrees arid is  positive clockwise measured from the generator to 
the positive X axis as shown in Figilre 2 . 1 .  

2 . 5 . 2  Sphere-Toroid' (GIN = 2 . 0 )  

This option may be specified for a complete range of regional configu- 
Four input parameters are necessary ration generated by a circular curve. 

for defining a sphere-toroid as shown in Figure 2 . 4 .  

f-7 

v 91 ,it 

,/--- PHI0 
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The input parameters are: 

1.  

. '  .4-- 

KC - Radius of curvat!dre of the generator 

2. ROFF - Offset distance measured f r o m  axis of revolution to the 
center of meridional curvature. 

3 .  PHI0 - Angular position in degrees of the beginning of a region 
a e a s u r e d  clockwise positive about the center of curvature i rom 
an axis parallel to  t h e  axis of revolution. 

4. PHIN - Angular position of the end of the region. 

2.  5 .  3 Discrete Point Option (GTN = *4.0) - 
This option was developed for use on regions where the generator 

cannot be described by one of the other options o r  where a curved generator 
is given by a set  of discrete points. 
ways the geometry may be supplied to the analyst, several variations of 
input data format can be accommodated. 

As a conseqmnce of various possible 

On a positive indicator (GIN = +4. O), tEe program wi l l  set  up the 
necessary geometric parameter from the input data which describes the 
generator by discrete radial and axial distances. 
program a re  EM (number of points given), RIPT (radial distance f rom axis 
of revolution at input points), XIPT (axial coordinates of the input points). 
The set  of RIPT  and XIPT must include the first and las t  points of the region. 
XIPT must be given in  ascending magnitudes. 
(GIN = -4. 0), the coordinates oi the discrete points a r e  given in radial and 
surface o r  brc  length, the surface length cocrdinate is input directly in the 
XIPT locations. 

The input quantities to the 

On a negative indicator 

-In interpolation routine is used to  obtain appropriate ~ eometric para- 
meters  at  station point's from the original input values. 
such a s  curvatures arL: computed using finite difference forms of the station 
set .  
putations. 
niirnber of points described by RIPT and XIPT should be at least as great as 
t h e  number of stations. 
chmgcs i n  the generator curve, it will  be necesbary to input a denser popu- 
latior. of RIPT and XIPT. 
involvt-d in the least  squares and interpolation routines. extreme care  must 
be exerLised in the use of this option i n  order  to obtain an adequate descrip- 
tion of shell geometry. 
t h c  additional recommendations described are adhered to. 

The parameters 

A least squares method i s  used to minimize the scatter of these com- 
TG hold the e r r o r s  in curvatures to  less than 10 percent, the 

For  some aituations such as locations of major 

(See Figure 2 . 3 .  ) Because of the difficulty 

A significant improvement in results is obtained if 
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Figure 2.3 

When the meridional and circumferential radii of curvatures a r e  
available, they can be input at discrete points and curve-fit to give a betk: 
description of the curvatures. If possible, i t  i s  strongly recommended that 
this capability be used since the e r r o r s  in curvatures a r e  rediced con- 
siderably to better control curvatures and less  input poir,t-: ::f the generator 
a.re required. This data is inFut in the location RCURV and RC:W?Z for 
radius of curvatures R 6 and R e  , respectively (Section ?. 3). 
RCURZ values must correspond with the pcints described !IV RIPT and XIPT. 
This is an optional input t o  both GIN = 4-1. 0 and GIN = -4,. 0. 
values a r e  input at  RG’JRV and RCURZ locations, the curvatures will b3e 
computed frcrn the discrete point set  of RIPT and XIPT, 

RCURV and 

When no 

2 . 6  CALL FUNCTION PARAMETERS 

Inpclt data of a multivariable nature are: defined t o  the computer pro- 
grams by the use of call .‘unction subroutines. 
described functional in t e rms  of the meridional and circumferential variables 
(PEL, ZTA). 
history. 
Specific instructions for the coding of these s Abroutines a re  given in  
Section 3 .  
following sections, 

These parameters a r e  

The time variable (TU) i s  available for descTibing the hading 
Call function subroutines a r e  t o  be coded and compiled by the user.  

Data that will be input in this manner are  described in the 

2. 6. 1 Stiffness Propertieb 

The stiffness parameters Sic: described in Section 1 .  0 ,  Equations 1. 1 0 .  

The 
It is sufficient to describe the inplan 2 stiffness B1, and the bending stiffness 

and Poisson’s ratio in order  t o  define all : .: neccssIiry parameters.  



function (BFCN, Static, DBBDD, Dynamics) will be written to  define these 
parameters  over the reference surface of the shell. 

2 .6 .2  Thermal Loads 

The thermal load te rms  a r e  described in Section 1.6,  Equation 1.15 
The call function (TFCN, Static, DTMP. Dynamics) will be written to  define 
these parameters  over the reference surface of the shell. 

2. 6. 3 Elastic Foundations 

The elastic foundation parameters  a r e  defined in Section 1. 6, 
Equation 1. 6. 
function subroutine KFCN. 
be defined in DKMP. 

For the static program these parameters  will be defined in  
For  the dynamic program these parameters  will 

2. 6. 4 External Damping 

The externai damping parameters  a r e  defined in Section 1.6, 
Equation 1.6.  In the Dynamics program this function subroutine, DKMP will 
define both the elastic foundation te rms  and the external damping parameters. 

2. 6. 5 Mass Properties 

The mass  properties f o r  the Cynamic program defined in  Section 1 .6 ,  
Equationl.6 are  defined to the computer program in the subroutine DMASS. 

2.6.  C Pressure Loads 

The pressure loading for the static case is defined to the program in 
For the dynamic case the time dependent loading is the subroutine PFCN. 

defined to the computer program in the subroiltine PRSS. 
yields positive displacement. 

Positive pressure 
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2 .  6.7 Parameters  for  Stresses 

For  the static program, the parameters  necessary for the computation 
of s t resses  a r e  defined lo the computer program by the following subroutines, 
STRlFN, STRZFN, TTF1. TTF2. 
paramet e r s : 

These subroutines define the following 

STRlFN, for  the f i rs t  s t r e s s  print layer,  EIl, Young's Modulus, DN1, 
distance from the reference surface to the s t r e s s  print locations and POIS1, 
Poisson's ratio. . 

STRZFN, these a r e  parameters  necessary for s t resses  at a second 
The definitions of EI2, DN2, POIS2 CtIi-respond to  the first stress layer.  

print par  amet e r s . 

TTF1, this subroutine defines the temperature TMPl and thermal 
expansion coefficient A L F l  at the first s t r e s s  print location. 

TTF2, these parameters  a r e  fo r  the second s t ress  print and the TMPZ, 
ALF2 have definitions corresponding to  TTF  1. 

2.7 STATIONS IN REGIONS: (EN) 

The machine program achieves a shell solution by integration of finite 
difference equations along the meridian o r  a rc  length distance oi the shell. 
The number of integration points (called stations) located in the rcxgion under 
consideration i s  assigned the EN code value. 
spaced with the initial point located on the reference surface at the beginning 
of the region designated station 1 fi = 1 or s = 0) and the last o r  E N - t h  station 
at the end or' the region called station N (-i = N o r  s = S ) .  The numbering oi 
stations proceeds in direction of positive meridional coordinate assigned to 
the respective region. 
region is 100 (minimum 5). 
on the reference surface of each region. 

The stations are equally 

The maximum number of stations permissible in a 
The regional input data a re  speciiied a t  stations 

The length Df the finite difference "lun~p' '  oi shcll is colnputcd i n t c - r n , i l  

This finite difference incrtBmc>tit d intc*pr.it ion i s  dc*.iint-d 
to the progrzm from the length o r  wrap distance. atid the> 1ii11nbt.r oi st'ttiotis 
(EN)  in the region. 
a s  DEL in the program and printout. 



3.0 DETAILED USE OF PROGRAMS 

3.1 IN5'ZODUCTION 

The Unsyrnrnetric Shell Computer Program is written in the FORTRAN 
IV language and makes use of the overlay feature and the ALTIO option of 
that language. 
additional 1900 core locations. 
output.) If the programs a r e  to be compiled for use without the ALTIO option 
it wi l l  be necessary to add an additional BACKSPACE command at each loca- 
tion where the backspace moved the tape over an END OF FILE. 
been noted in the listings. 

-4LTIO sacrifices speed of execation in favor of providing an 
(It does not make use of buffered input- 

These have. 

The program has been checked out in NAASYS, the NAA adaption of the 
IBM 7090/7094 IBSYS/IBJOB system and used the NAASYS l ibrary routines 
shown in the load map, Section 3. 12m. 

The NAASYS input tape is 'UNiTCj'; the output tape is 'UNIT06'. In 

NAASTS itself, 
addition to these files, the program u c units 3, 7, 8, 9, 10, 11, 12 and 13 
a s  scratch tapes o r  for overlay storage during execution. 
i s  stored on 'UNIT01'. 

The program is made up of an executive program and eleven links, 
four of which a r e  called by the executive program, three by the DATLNK 
subroutine and four by the P-4NDX subroutine. 
gram in each link and a description of its use, follows. 

The name of the main pro- 

Link No, Name 
~~~ ~ ~ 

Executive 

DATLNX 

GEOM 

Purpose 
~ 

Reads the title cards  and general data; sets  up tape 
numbers and rewinds all tapes; controls the flow of 
execution of other links. 

Acts as a suh-executive program to control GEOM, 
DATLYR and DATLD so thht these three subrou- 
t i n e s  may sharc common auxiliary routines 
CODIMA, ENTERP and DINTRP. 
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Link Na. 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Name 

DATLYR 

DATLD 

PANDX 

RSLT 

FGHPE 

DYLMN~: 

GMTX:': 

ZMTRX 

SUMS 

.I. 

"Dynamic s version only 

3 . 2  DECK SET-UP 

I 'I1 I'posc 
--- - _-.- 

Sets up stiffness and t v r L i l w r . i t i i  re coefficients tly 
[unction subprograms. Thest. ;ire stored o n  tape. 

This is  the Fourier Load Coefficients generator. 
Pressures ,  PFE, PTH ;tnd P N  a r c  supplied b y  
function subprograms. These coefficients a r e  
preserved on tape. 

A sub-executive program which, together with the 
subroutines it controls- -RSLT, FGHPE, DY LMN, 
GMTX--generates I lie recursion t e r m s  and the 'P' 
and 'X' matrices of equations 1.60 Section 1.10. 

Sets up the boundary matrices needed in computing 
'PI and 'X' at the top and bottom of the shell. (See 
Section 1.10. ) 

Sets up the F, G, and H matrices in equilibrium 
equations 1.34 of Section 1.7. 

Sets up the L, hl, .lnd N matrices for the dynaniic 
response equations of Section 1.9. 
ivritten on tape 13. 

These a re  

Computes 'Z', the solution matris. 

Sums the Fourier components ;ind computes inter - 
nal loads, i. e . ,  bending nionicnts, transverse 
shear forces, and mc~m t,rcinc forces. (In the static 
version, s t resses  ii1;iy also l)c c-omputecl i n  t!iis 
link \vith the paraiiic>tc.rs clcfinctl by function 
subprograms. ) 

In Figure 3A of this section we havc sho \v i ;  : l i t *  sc.1 -up o i  t l i c .  t * o l t i i i i i i -  

binary program deck with the necessary con! I-01 t * ; ~ r ( l s  L ~ I -  c * . i c . h  l i n k .  
of the deck names corresponding to t h c -  :;ul,progr.Iiii ii.iii1t.s i s  givt*ii  in t l i v  
tahie at the end of the section. 

.\ l i s t  
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TABLE 'OF SUBROUTI%JE NAMES AND DECK NAMES 

Subroutine 
Name 

DATLNK 

GEOM 

DATLYR 

DATLD 

PANDX 

RSLT 

FGHPE 

DY LMN 

GMTX 

ZMTRX 

SUMS 

Static 
Deck 

DLNK 

GMTRY 

STIFF 

LOAD 

PEANDX 

BNDRY 

FGMTX 

SOLTN 

SUSM 

Dyna mi c s 
Deck 

DLKDY 

GMYD 

STFDY 

DLDY 

PXDYN 

BNDD 

FGHDP 

LMNDY 

GDYN 

SLND 

SUMD 

- 58.- 



The $IBJOB, $ORIGIN and $DAT.i cards  a r e  single cmt ro l  cards. The 
circled number found on the first  two mentioned control cards ,  indicate the 
c-der  in which they, plus the associated decks of that link, should be stacked. 
Fur example, those second level subroutines preceded by a $ORIGIN DELTA 
card - GEOM, D.4TLYR and DATLD will be found in the deck before the first  
level subroutine, PANDX, because they a r e  executed in this order.  

It i s  imperative that the utility subroutines be kept with each deck as 
shown. Si. ce only one link of the same level may occupy core at a given 
t ime, the utility subprograms CODIMA, ENTERP and DINTRP a r e  stored 
with the DATLNK link so  that they may be shared by GEOM, DATLYR and 
DATLD. 

Additional control cards preceding the $IBJOB card a r e  likely to vary 
somewhat with the installation. 
sulted. 
in  Figure 3B, below. 

An IBM systems hadbook should be con- 
The chrds used at Space and Information Systems Division a r e  shown 

9 020020 0 $JOB IBJOB 055705055945 32 192120BB04702FURU IKE 

9 02002 1 0 $IB JOB PLASTIC 
9 020323 0 $IBSYS 

Figure 3-B 

3 . 3  DATA -DECK SET-UP 

Data decks should be scacked as.  follows: 

1 .  

2. GDA, general shell data, read by Lhe EXECUTIVE program. 

3 .  GMDA, geometry data, read by the GEOM subroutine. 

A l l  other parameters such a s  stiffnesses, springs, damping, mass, 
temperature and pressure loadings, and section properties used in s t ress  
computations a r e  defined by funcf ion subprograms, 
be written by the user  and compiled for each particular run. 
how to write the various functior, subprograms is found in Section 3.4, 

Three cards ( 7 2  columns e x h )  of title data. 

These ssbprograms wil l  
A discussion of 
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With the exception of the thre:- title cards,  each group of data livted 

In the instructions 
above shouZd have i minus sign in column 1 of the last  card,  since this data 
is  read by.the DECRD subroutine. 
below, the DECRD index of eac5 irnut quantity is given. 

See Section 3. 5.1. 

DECRD 
Index Name 

3.3. 1 Title Cards 

Description and Comments 

Three title cards  form ftie first  three cards  of any data deck for each 
case. They 
may include a brief problem description, the date of the run, a reference,  
etc. 

These cards  a r e  useful in identifying the run at a la ter  date. 

I 
A 0  

HO 

EO 

' SIGO 

POI 

ENF 

These cards may not be omitted, but th.,y may be blank, i f  desired 
If the cards  a r e  forgotten, the e r r o r  indicatior from DECRD may occur for 
a multiple case run in  which title cards a r e  present for the second case,  o r  
the job may terminate with an EXECUTION ENDED designation (as explained 
in Section 3. 5. 1). 
subsequent subroutines a r e  read out of turn and the program is placed in an  
endless loop. 

-4 more serio.as situation occurs when the data from 

3.  3.2 GDA, Gen,eral Shell Data 

-411 input data must be dimensionally consistent. It should be noted 
that all  nondimensionalization is done internal to the program, thus all  inputs 
must be supplied lvith appropriate dimensions (e.  g. , t ransverse load P N  is 
input \vith dimensions P/L2). 

~ Reference length (a) ' Reference thickness (h,) 
~ 

Reference Young's modulus (E,) 

Reference s t r e s s  (uo) 

Poisson's ratio ( v )  

The number of Fourier components (10 maximum) 
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DECKD 
Index 

7 

10 

1 1  

Name 
. 

Description and Comments \ 

\ 

BCIT 

BCIB 

PFLAG 

CEXT 

DELT 

.- 

Boundary condition indicator at f irst  station. r = 1. closed apex 

= 2. pinned 

= 3. clamped 

= 4. free 

= 5, roller w 

I = 6 .  roller u 

= 10. special boundary matrices read in with 
geometry data, Must use 13 whenever 
non-zero values a r e  prescribed in 
boundary matrices lo or  1,. 

BouTdary condition indicator a t  last  station. 
(As BCJT) 

Print indicator for input data, I 
= 0. prints general data and boundary 

matrices 

1. prints above information and input data 
for the particular geometry configuration 
selected by GIN and the computed values 
for r ,  x, we,  u+# p and y. 

= -1. prints all of above information and stiff- 
ness coefficients, elastic coefficients, 
thermal load and moment and pressure  
loads, 

Number of t ime cycles 

Time increment in seconds 



DECRD 
Index 

12 

18 

Name 

THT 

FPRNT 

c 
Description and Comments -+ 

\;/ 

Circumferential angle 8 (degrees). Five values of 
THETA may be chose:?. The deflections, rotations, 
internal loads and s t resses  wil l  be printed at these 
values. 

Fourier component print values, 
permitted, 
summing a re  possible for checking convergence. The 
la.& FPRNT value given should be tho same as the 
value given for ENF in the general data, i. e.,  
GDA ( 6 ) .  

Three prints a r e  
Twc intermediate prints of the Fourier 

Note: If THT and FPRNT a r e  not entered, the program wil l  set 
THT (1) = 0.0 and FPRNT (1) = ENF. 

The last  card of GDA data should have a minus (-) in cc'umn 1. 

3.  3 ,  3 GMD-4, Geometrv Data 

The GhlD-4 data a r r ay  is zeroed before the data i s  read. This means 
that any data with a value = 0. need not be entered. 

DECRD 
l n d e s  

1 

2 

3 

Na m,e 

GIN 

EN 

ENLAY 

Geometry indicator 

= 1. cone-cylinder 

= 2. sphere-toroid 

= *4, discrete points 

Number of meridional stations (1 00 maximum) 

Number of layers 

When GIN = 1. 0; see Section 2. 5. 1 

4 RAl 

Description and Comments 

Radial distance from axis of revolution to station 
1. (LP 

"'L - unit of length 



DECRb 
Index Name Description and Comments 

Meridional length of shell (L) 

Angle the generator makes with the axis of revolution 
(degrees) 

When-GIN = 2. 0; see Section 2. 5.2 

4 I RC I Radius of curvature of the gensrator (L) 

I Offset distance measured from axis of revolution to 
center sf meridional Curvature (L) 

Initial opening acgle from the vertical axis (degrees) 

Final opening angle from the vertical axis (degrees) 

When GIN = 4.0; see Section 2. 5.3 

8 

9 

109 

209 

3 09 

EM 

RIPT 

XIPT 

RCURV 

RCURZ 

Number of RIPT's given (12 minimum, 
100 maximum) 

Discrete radial distances 

Discrete axial o r  vertical  distances (or a r c  lengths) 

Meridional radii  of curvature 

Circumferential radii of curvature 

Boundary matrices, when not set  by indicator: only the elements 
which might possibly be non-zero a r e  included in the arrays.  
tion below assumes the user is familiar with Section' 2.8, Boundary 

The explana- 

Conditi 

409 

41 0 

41 1 

41 2 

S. 

st. (2,2) 

Elements of force boundary matrix (no) at  station 1 
t 
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JJJARD 
Index 

413. 

414 

41 5 

41 6 

41 7 

418 

419 

42 0 

42 1 

4 2  6 

4 3 3  

4 3  8 

Name Description and Comments 

Elements of displacement boundary matrix (Ao) 2t 
station 1 

Column boundary matrix ( e )  at station 1. 
elements are in consecutive locations. 

The five 

Elements of force boundary matrix (RN)  a t  station 
N, stored in the same manner a s  no above. 

Eleme'nts of displacement boundary matrix (AN) at 
. station N; diagonal eIements only. 

Matrix ( e )  for the last station 

The last card of GMDA data should have a minus ( - )  in column 1. 

3.4 F'J'NCTIONAL SUBPROGRAMS 

The FUNCTION subprogram is an independently written and compiled 
program that i s  executed wherever i t s  name appears in an arithmetic state- 
ment in another routine. The object (binary) or source (FBRTRAi6) deck 
must be included in the.joh deck even though the FUNCTION value equals 
zero; otherwise., the program that references the FUNCTION will not be 
ex e cut e d . 
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Since a FUNCTION is a separately compiled subprogram, the variables 
and statement numbers within it do not relate to any other component of the 
program. 
takes place at execution time. 
returned to. the callinc program: values may also be returned via the 
YGidCTION argumeiits and/or gariables assigned to  a common region. 

Communication between the FUNCTION and its  calling program 
The value of the FUNCTION is always 

General Form: 

FUNCTION name (a, b, ... n) 

name = ... 

RETURN 

END 
Name is a subprogram name ( 1  -6 alphanumeric 

characters ,  the first  of which is alphabetic). 
FUNCTION names used in this program a r e  
listed at  the end of this section. 

- a, b, --n - a r e  nonsubscripted variable o r  a r r a y  names 
used to  transfer values between the FUNCTION 
subprogram and the program that references 
it. There must be at  least one argument. --- 

Basic Description: 

The FUNCTION statement must be the f i rs t  statement in the 
subprogram definition. (Comments cards excluded. The name n u s t  
not be the same a s  a l ibrary o r  built-in function unless the name i s  
included in an EXTERNA4L statement uhich precedes the first  use of 
the FUNCTION by the calling program. 

The FUNCTION subprogram may contain any FORTRXN state- 
ment except another FUNCTION statement, a,SUFROUTINF. st atenlent, 
o r  a BLOCK D-qTA subprogram. 

-4 variable i n  a COMMON block may be referenced i f  the rulcs 
for use of COMMON a r e  follcnvecl. 
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The name of the FUNCTION must be assigned a value at least - 
once within the subprogram. 
appearance of the function name on the left side of an arithmetic state- 
ment (e, g. SOMEF = X/Y),  o r  by i t s  appearance in the l ist  of a R E A D  
statement within the subprogram. 

This value may be assigned by the 

Arguments : 

The relationship between variable names used as arguments in 
the calling program and the variables used a s  arguments in the 
FUNCTION subprogram is illustrated in the following example. 

Calling Program 

. 
-4 = SOMEF (B, C) . 

. 
Subprogram 

50 SOMEF = X!Y 
55 RETURN 

END 

FU7ZTION SOMEF (X, Y) 

The value of the variable B of the calling program will be used a s  
the value of the subprogram variable X; and C for Y. 
B = 10.0 and C = 5. C, then A = .Z .  0. 

Thus, i f  

$ 

The arguments used in the unsymmetrical shell of revolution 
program a r e  PEL, Z T A  and TU, where PEL is the meridional distance 
to a station, Z T A  is the circumferential. distance a n d  TU is the elapsed 
time. 
be necessary to include a RE-4D statement in thc scbprogram and to 
supply the required data cards to satisfy the RE-AL at execution time. 

If additiona: values a re  necessary to define a. FUNCTION it will 

RETURN and END Statements: 

A FUNCTION subprogram must contain an EP'D statement and a t ,  
least one RETURN statement.' The END statement: specifies the physi- 
cal end of the subprogram for the compiler. 
signifies a logical conclusion of the computatiot? and returns any 
computed value and control to the calling program. 

The RETURN statement 
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Multiple Entries: 

The normal entry into a FUNCTION subprogram is made by a 
function reference in an arithmetic expression. 
fir st executable statement following the FUNCTION statement. 
also possible to enter a FUNCTION by means of a reference to an 
ENTRY statement in the FUNCTION. 

Entry is macie a t  the 
It is 

General Form 

ENTRY name (a, b, ... n) 

name is the name of an entry point. It must follow 
all the rules given for the FUNCTION name. 

- a ,  b_, . . . 2 a r e  the dummy arguments corresponding to  
actual arguments supplied by a function 
reference. 

The ENTRY statement is not executable. When inserted in a 
se r ies  of statements, the ENTRY statement has no effect on the logical 
flow of the subprogram. 
executable statement following the ENTRY statement, so it is  easy to  
s tar t  using a subprogram at  any desired point. 

Entry to the subprogram is made at the first 

Within a FUNCTION subprogram, only the FUNCTION name may 
be used a s  the variable to ca r ry  a result back to the calling program. 
The ENTRY name may not be used for  this purpose. 
esample illustrates this rule. 

The following - 

. Calling Program 

. 
A = ONEF (B, C) 

F = TWOF (D, E) 

. 
Subprogram 

5 ONEF = X :k Y 
10 RETURN 

FUNCTION ONEF (X, Y )  
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E N T R Y  TWOF (X, Y) 
--+ O N E F = X t Y  
20 RETURN 

END 

Note the use of the pr imary function name to return the function 
value to the calling program, even when the reference was to an 
ENTRY name. 

Additional examples showing the use of FUNCTION subprograms 
with multiple ENTRY statements may be found in  Sections 3 .6 ,  3. 7, 
3 . 8  and 3.9.  

Following is a table which gives the FUNCTION names, ENTRY 
names, calling program names and the assigned deck names 
( $  IBFTC manes) for the static and dynamic versions of the Unsym- 
metrical Shell of Revolution Program. 
Program Nomenclature, Section 3. 13. 

For  their definitions see 

STATIC DYNAMIC 

Calling Program DATLYR 

FUNCTION BBB (PEL, ZTA) 
ENTRY DDD (ZTA) 

FUNCTION ENTT (PEL, ZTA) 
ENTRY EMTT (PEL, ZTA) 

I FUNCTION ‘::DKK~ (PEL, ZTA) 
ENTRY “DKK2 (PEL,  ZTA) 
ENTRY DKK3 (PEL, ZTA) 

ENTRY DMP2 (PEL, ZTA) 
ENTRY DMP3 (PEL,  ZTA) 

ENTRY DMP1 (-PEL, ZTA) 

FUNCTION DMM1 (PEL, ZTA) 
ENTRY DMM4 (PEL, ZTA) 

Calling Program DATLD 

FUNCTION P P P N  (PEL, ZTA) 
ENTRY PPPH (PEL, ZTA) 
ENTRY PPPF (PEL, ZTA) 

BFCN DBBDD 

TFCN DTMP 

KFCN 

DKDMP 

DMASS 

PFCN 

>: Deleted in the static deck becaude of core storage problems, 
therefore DKK3 becomes the FUNCTION name, 



FUNCTION P P P N  (PEL,  ZTA, TU) 
ENTRY PPPH(PEL,  ZT-3, TU) 
ENTRY P P P F ( P E L ,  ZTA, TU) 

Calling Program SUMS 

FUNCTION E11 (PEL, Z T A )  
ENTRY -DN1 (PEL, ZTA) 
ENTRY POIS1 (PEL, ZTA) 

FUNCTION E12 (PEL, Z T A )  
ENTRY DN2 (PEL,  ZTA) 
ENTRY POI’S2 (PEL, ZT-4) 

FUNCTION TMP1 (PEL, ZT-4) 
ENTRY ALFl (PEL, ZTA) 

FUNCTION TMP2 (PEL, ZTA) 
ENTRY A L F 2  (PEL, ZT-4) 

STATJC DYNAhUC 

DPRSS 

STKlFN 

STR2FN 

TTF 1 

TTFZ 

3.5 UTILITY SUBROUTINES 

3.5.1 DECRD Subroutine 

-411 data, Lvith the exception of the three title cards,  i s  redd Iq- Tneans 
of the DECRD subroutine, included Lvith the sl-mbolic decks. 

This routine provides the facility for reading a variable number of 
pieces of floating.point data into specified elements of an a r ray ;  these ele- 
ments may be either in sequential o r  in nonconsecutive locations. 
information specified is actually read into storage. 

Onlv the 

/ e  

3 -  3 
+ / 7  

. .  - 0 2  
.. 
2 4  
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The fixed point number (index) in the first field on each card defines 
the position of the first piece of data on the card. If the index is  1, the first 
piece of data will be stored in the f i r s t  location reserved for the array;  i<it  
i s  16, the first word wi l l  be placed in the 16th position, etc. The remainiqg 
fields on each card contain information for the successive locations oftke 
array. If one o r  more fields a r e  left blank, no information is read into the 
locations corresponding to these fields; the information already in these 
locations is unaltered. 

The sample data sheets shown iri Section 3 . 6 . 2  have 6 fields of 12 card 
columns each, and an identification field of 8 columns for sorting purposes. 

a. 

b. 

C. 

d. 

e. 

The index must be written to the extreme right of the first field; 
i t  may.not be zero  o r  blank. (No decimal point) 

The programmer should keep in  mind the way in which FORTRAN 
stores a r rays  having double o r  triple subscripts, e. g. , A(1, l), 
A(2, 1)s N 3 ,  11, A(1, 2), A(2, 2), 

The floating point (REAL) data should be entered with a decimal 
point (anywhere in the field) and an exponent, when necessary, 
written to the es t reme right of the field and preceded by a IS1  or  
1 - 1 .  

Reading.data is concluded by placing a negative sign in column 1 
of the last card to  be read. 

Zero should allvays be entered a s  '0. I .  -4'-0. 
recognized a s  a blank. 

or  '. 0' will  be 

ERROR indication: If the index is zero or blank, the comment 
I I ::::> ::::: B-4D INDEX ON DECRD CARD=" will be printed, followed by a print- 
out of the columns 1-80 of the defective card. The job will be terminated. 

If the data for the a r r a y  in the CALL statement has been completely 
read, and no negative sign has been encountered in column 1 of the last  card 
sent, data intended for subsequent CALL'S will be read into the incorrect 
array. When there a r e  no data cards  to satisfy the appetite of a CALL 
DECRD statement, the j o b  will terminate with an EXECUTION ENDED I 

de si gnat ion. 

If this occurs before all  expected results have been printed, check the 
last card of each data block for the negative sign i n  column 1. 

In order to use the DECRD routine in conjunction with the ALTIO 
option, it i s  necessary to physically load a copy of the routine with the 
program deck. 
from the library tape at  load time, so drog-in decks must be used. 

ALTIO nil1 not cause the proper adjustments to DECRD 
, 1  
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. 3.5.2 M,4D, MSU, MMY, INVMS . <-' 
1; 4 

These four subroutines perform matrix addition, subtraction,. multi- 
They a r e  extremely simple in their plication and itlver sion, respectively. 

approach and must be recompiled to change dimensions for use in other 
decks. 
than the usual NAASYS trapping information for underflows, overflows and 
divide checks. 

There a re  no e r ro r  indications given in the 1st three routines other 

When data has been entered correctly, these subroutines 
will present no problems; 

The inversion routine has an e r r o r  indicator, IX, which is set a t  0 o r  

The Unsymmetrical Shell 
-1 for a singular matrix. 

of Revolution Program makes such a tes t ,  prints the comment "SINGULAI; 
MATRIX I = XX" and terminates the job, When this+error occurs, check 
the data-especially any special boundary matrices e ' e red,  and the 
FUNCTION subprograms. 

This is  returned to the calling program through 
' the argument l ist  and may be tested after return, 

The Dynamics version of the program uses  a MAP (machine language 
coded) copy of the INVMS subroutine. 
causes the C D Y N  link to exceed core storage. 
a r e  included. 

The FORTRAN language routine 
Listings for both versions 
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3 . 5 . 3  DINTRP, ENTERP 

These subroutines perform linear double and single interpolation. 
DINTRP makes use of ENTERP in interpolccion for values along a particular 
curve, They a r e  included for use by FUNCTION subprograms called by 
DATLYI!. or DATLD, 

In DINTRP when the first argument is not bounded by the given table 
(curves) the statement 

"ARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP." is 
printed, followed by 

ARGUMENT =, (1 PE  12.4) 
TABLE VALUES (printed 6/line) 

and the job is terminated. 

When the argument i n  the single interpolation bubroutine, ENTERP, 
exceeds the limits of the table, the routine selects the value at  either end of 
the table and continues after printing. 

"LIMITS OF TABLE EXCEEDED BY ARGUMENT = (1 PE 12.4) 
(1 PE 12.4) = VALUE USED FROM TABLE" 

Values entered in the tables should always be given in increasing 
algebraic order,  both in t e r m s  of the numbers used to designate each curve 
of the family, and the values assigned to  the points along the curve. 
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3.5.4 CODIMA 

CODIMA is  a cur' e fitting subroutine which has  the Sollowing 
properties: 

1. 

2. 

3. 

4. 

To the straight portions of any curve defined by three points on a 
straight line, a straight line will be fitted. 

To tho smooth portion of any curve, a smooth curve will be fitted. 

The method maintains continuous first  .derivative except a.t the 
ends of a straight segment. 

The method will fit curves with "corners" o r  "sharp turns" with- 
out th.e large deviation usually found in other methods. 

An interpolatioz; method io developed such that some of the considera- 
tions taken when an engineer fits a curve with a french curve a r e  formulated. 
This is the CODIM (controlled deviation interpolation method) concept. 

The method will interpolate in a mo;e engineering manner in the sense 
that: 

1. The f i r s t  derivative is continuous except at the ends of straight 
segments defined by three points on a straight line. 

2. No large deviation wili  be found when slope changes a r e  lsrge.  

3.  Ability to change value and slope rapidly. 

4. Ability to fit straight lines on straight line porti-". 
and fit smooth a r c s  through the smooth portions of the curve. 

. . the curve 

The method fits a polynomial through an interval wi th  information given 
by "previous points" (points to the left) and another polynomial through the 
interval with information given by "subsequent points" (points to the right), 
These two polynomials a r e  then compared for compatibility. If they differ, 
a weighted average cr ' the polynomials is taken in  a way such that the poly- 
nomiel that deviates lass  from the straight line connecting the points defining 
the interval is  given mor'o weight, 
highzr clegr.je polynomials, in the CODIMA version, 

For  simplicity, parabolae a r e  used over 
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3.505 FILE -- 
FILE is a function subprogram by which any number of files (or end of 

fills-marks) on a tape ;nay be skipped, a s  specified by the pro*grammer. 
Alternatively, the tape may be backspzced any number of files. The tape is 
positioned a t  the beginning pf the desired file ready to read or write the f i rs t  
record. (Extent: 45 locations. ) 

Availability: On the FORTRAN l ibrary tape. 

Use: The specified tape can be positioned a s  indicated by means of the 
statement : 

A Used to make the stat thinent format consistent with 
FORTRAN rules. 

I FORTRAN tape number of one of the available tapes; 
must be a positive fixed point constant or variable. 

J The number of files to be skipped or  backspaced, 
including the f;,le in which the-tape is .positioned. 
must be a fixed' point FORTRAN expression. 

It 

J>O, skip 
J< 8, backspace 

J should never be zqro. 
one file wil l  be skipped either forward o r  back\vard 

If a zero argument is used, 

depending on the sign of zero. 

Examples: 

a. 

b. 

C .  

d. 

Tape 4 is positioned within o r  at the end of file 2 and we Xvish to 
get to file 5. Then J = 3. 

A = FILE(4, 3) 

Tape 4 is positioned at  the beginning of file 1'2 and file 16 i s  
desired. Then J = 4. 
A = FILE(4, 4) 

Tape 4 is positioned anywhere within file 7 and file 4 is desired. 
Then J = -4, 
A 5 FILE(4, ~ 4 )  

Tape 4 is positioned anywhere within file 7 and the beginning of 
file 7 i s  desired. Then J = -1. .. 
A = FILE(4, -1) 

Even i f  the tape is at  the b_oginnin& 0 f . L  file: you must count thitt 
file in computing the val<e of J. In the last csampfe, if tape 4 is at 
the beginning of file 7 and a J of -1  i s  given, the nest file to be read 
or written would still be file 7. 

. ". . . a. .. . '. 
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3.6 SAMPLE PROBLEM 1 

! 
10, 5 

3.6. 1 Problem Description and Set-Up -- 

v = 0.3 

.A f ree  cylinder under thermal loading i s  considered. The geometry 
and loading is  shown in the following figure 

BBB = 2.4725 x l o 7  (in plane) 
DDD = 1.8887 x lo6  (bending) 

Thermal Load 

ENTT = 9.375 x 104 f in  plane) 
EMTT = 1.0045 x 1 O4 (bending) 

S t ress  Output Parameters  

E I ~  = 3 107 E12 = 1.5 x l o7  

DN1 = -0.4167 DN2 = 0.5833 

POISl = 0. 3 . POIS2 = 0.3 
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3.6.2 Data Sheete 
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3 . 6 . 3  Functional Subprogram Used, 
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3.6.4 Output 

I 
I 
3 

1 

2 

J 
I 
E 
L 

t 
Y 

5 
L 
U 
4 
c . 
i 
J 



! 

0 
0 

0" 

9 
0 
0 

d 

II 

0 
0 
v) 
U 

0 
0 

U 
0 
0 
0 

9 
r, 

II 

C 
LL. 

C 
C 

% 

9 
0 
0 

d 

H 

0 
I 

0 
G 
Lu 

, E  
3 
r( 

It' 

e 
4 I 

r( 
0 

Lu 
0 

8 
0, 
w 

n 

(D 

u L 

m 

0 
0 

Lu 
0 
0 
0 
0 

* . 
H 

t 

u 
(c 

I 

0 c 
Lu 
C 
0 
0 
0 

r( 

n 

u. 
2 
Ly 

rl 
0 
I 

Ly 
0 

g 
9 
(* 

H 

II 

0 
b 

D 

E 
k 
' e  
U 
iI  

13 
P 
k 
E 

/I 

0 . 
c 

D 
U 

Lu 

E ' *  
H 

I 

0 

Lu 
P 
u 
C 
D 

I 

. 
H 
I 

r! 

LL. 
c 
D 

U 

r( 

' I  

b 
IF 

el 
I 

I 

c 
0 
0 
U 

L 

a 

- 
U 
c 
2 

0 

I 

E 
i 

1 
a 

P z 

c 
a 

L 
a 
a 

Y 

Li 

0 
d 

U J  
0 
0 
0 
0 

I 

0 

\y 
0 
0 
0 
0 

I 

. 
CI 

rr 

@ 

2 

s 
c3 
0 

r( 

I 

0 
0 

Lu 
0 
0 
0 

3 
H 

* * 
* a 
d 
0 
P 
3 
E 
Q c 
t 

.I 
I 

! 
i 

1 

I 

I 

I 

i I 
i 

i 
I 

i I 
i 
' ( P 6 F Q O  

m m m m c :  

i 
I 

1 1 1 1  

! 

0 0 r 0  

Q6D.6 
m m m m  E I I I l l  I 

p d d p  I 

i 
l 

e! 
Cnl 
t 

u1 
0 
0 
0 

0 
0 

0 

8 
1 

c m 
I 

Lu 

C 



i 

f 
i 
1 

i 
i 

1 
i 
I 
i 
I 

I 

! 

j 
i 

I 
! 
I 

i 

I 
t 

I 
I 
! 
I 
I 

6 rn 
I w 
0 

8 
8 
0 
0 

0 
0 

6 rn 
I 
UI 
0 
0 
0 
0 
8 
0. 
0 

I 



r n 

0 

I t  

x 
2 

C 

Iu 

0 
C m 
d 

H 

r) 
X 
U 

LI 
G 

JJ 
C. 

VI 
t 
LI 

II 

.L 

Q er. 



U Z  

U 
E u  

i 
i I 
i I 
I 

I 
1 

i 
I 

i 
! 
i 
i 
I 

B 3  
L"S 

.. 



c 
ht 

2 c 
t 
4 
t 
v) 

f 
0 
3 
0 
Q I 
c 

I 

L 

2 

c 
4 
c. 
v) 

U 
C 
U 

..e... 1 

O t 0 0 * i o  

tGQPo 

- 107 - 



I 

I 

0 cn 
I 

Lu 
0 

0 
0 
0 
0 

0 

8 

2 
I 

UJ 
6 
0 
d 

N 
Ln 

6l 

LII 

Q; 

(u 
0 
I u * 
r- 
(P 
(n 
t- 
(u 
0 

(n 

0 

0 

0 nJ 

z 
c- 
4 
t 
v, 
Y 
0 
LA 

X 

w 
I- 

I 

s 
c 
N 

% 
I 
&I 
0 
Q 
0 
0 
0 

8 
0 

6 

P 
;t 

I w 

N 
4- 
fu 
(v 

ru 
0 
I 

W 
0 

m 
PD 
N 
0 

m 

5: 

(P m 
I 

W 
0 
0 c! 
0 
C 
0 
0 

0 

cn 
0 
1 
ILI 
I- 
Qc 
(v 
QD 
0 
d 
(v 

I 
e: 

I *  

I i 

i 
! 

I 
1 

I 

i 
I 

! 

i 

I 

I 
i 

! 

I 

f 
j 

! 

I 
i 

! 

! 

i 
I 

I 

I 

9 .  
rl 

I 

I- 
4 c 
v, 

E! 

% 

I 

Y 

X 
C 

I z 
N 

0 m 
I 
u d  
0 

0 

0 

0 

8 
g 

VI 
0 
I u 
Fl 
I- 

N 

d 

$ 
3 
UI 

fu 
0 
I 

(D 

0 m 
0 

k 
3 

2 

6 cn 
8 

Lu e 
0 
O B  
0 
0 
0 
0 

0 

F. 
0 
I 

W 
f- a 
'", 
? 
(u 

U 
I 

i 
i 

i 
i 

i 

I 
i 

I 
* I  

I 

I 

I 

I 

I 
i 
i 
! 
i 
I 
I 

i 
I 
! 

0 :  

I 
1 

i 

c. 
! 

2 
0 
L 

b 

I 

1 
I 

i 

I 
I 
i 
i 
i 
I 

i 
i 



I 
w 
0 
0 
0 

0 
0 

0 
. 
I 

Lu 
.s 
In 
rE 
6 
PD 
6 u! 

I 
U 

(u 
0 
1 

UJ 

In 
(P 
r- 
C 
4 
.s 
rn 

c 

0 rn 
1 

0 

I 
I 
1 

I 
I 
i 

i 
I 
! 

I 
I 

I 
i 

1 F 

i 



9 

c1 
N 

t 

c 
c w 

E! 
2 
0 
c e 
c 
Y, 

c 

I 

I 
j 
I 

I 

I I 
I 

j 
j 
! 

I 
4 

Q 
h 

I u 
0 
0 
0 w o  
0 c: 
t 

0 
b 

0 
*, 
I 

UJ 
0 
0 
0 

30  
0 
0 
0 

10 '  

i 

i 

I 

! 
i 

I 

1 

I 

! 
! 

I 

! 

I 
! 

I 

1 I 

I 
I 

i 

I 

! 

I 

! 

i 

I 

I 

I 

R 

I 

I 
I 

i 
I 
I 

1 

! 
I 

I 

I 
! 

4 

1 

j 

1 
I 

I 

I 
i 
j 

5 
b 
i 
i 

i 
I 
! 

I 

I 
I 

I 
I 

I 

j 

I 
! 

I 

i 

I I 

I 

t 
i 

I 

I 
! 

I 
i 
I 

I I 

i 
I 
I 
i 
f 
i 

(u 

Y 

m 

6 m 



! 

* i  I 

i 
i 

t 

i 
1 

I 

i 
! 

i I 

-I 
i 
1 

I 
I i 

1 
i 

! 
I 

4 

0 
m 
I 

i 

I 

I 

i 
i 

! 
i 
t 

1 
I 

0 c. 

II 

i 

0 

0 
b 

, I 1  

I 
k 
f" 
I 
i 

i 
I 

i 
i 
i 
i 

i 
! 

I 

I 
! 

0 

0 
9 

I 8  

.a 
IC 

lc 

i 

i 

I 

I 
I 

. ) -  

\- 

c 
0 
0 

> O  
0 gi 
* '  

0 

- 1  

I 
i 



, 

i 
i 

I I 

I 
! 

! 
1 

i 
i 
i 
8 
I 

I 

I 

i 
f 
: 

h 

Y 

VI' 
0 :  

c 

- 112 - 

1 

I 

i 

1 

i 

i 
I 

i 
r 

L L u  
I C  
b-C -c . . 



k -e % 
I -u 

0 
I 

-U 
u w. 
t l  
tuu 
I C  
C C  
-0 

- C  
x c  
- 0  
C O  

m C  
- 0  

-u 
t l  
W U I  
IC 
F-C 
.C 

- C  x c  -c 

vrc 

a m  

2: 

r C  
.O 
-c 
x c  
S C  
u *  

0 
U 
0 J 

C 
L 

I 

- 1 1 3 -  



3 . 7  SAMPLE PROBLEM 2 

3. 7. 1 Problem Description 

An Apollo-like s h d l  pinned at the edge is consid red. P 

Pinned 

\ 

* \  
100 psi 

Normalizing constants 

a, = 1 
ho = 1 
Eo = 1 
cro = 1 

No Thermal Loads 

Stiffness Parameter 
1 

A = t2 -i 5625 - 2(75)5 ,  Cos 8 

i f  A<4425, BBB = 3 . 2 9 6 ~  lo6 
DDD = 3 . 2 9 6 ~  lo6  

if 4425<A< 7225, BBB = 1.9779 x lo6 
DDD = 1 . 9 7 7 8 ~  106 

i f  7225<A< 1 1025, BBB = 1.386 x lo6 
DDD = 1.386 x l o6  

if  A>11025, BBB 5 ' 0 , 7 9 1 1 6  X lo6 
DDD = 0.19116 x lo6 

- 114 * 



P ? s s u r e  p a r a m e t e r s  

Nor mal p r e s s u r e  definit ion 

B = 62 + (s0.49$ - 2(30.492)  6 c o s 8  

i f B < 4 0 0  PPPN = 100.0 

if Bs400 PPPN = 0.0 

also c i r c u m f e r e n t i i l  and  mer id iona l  pressures def ini t ion 

PPPH = PPPF = 0.0 

Stress output p a r a m e t e r s  

E11 = E12 = 29. 5 l o 6  Young's Modulus of stress output location 

Dis tance  to neu t r a l  s u r f a c e  

A = 5 2  t 5625. - 2(75)  6 COS e 

i f  Ac4425 DNl = -1.025, DN2 = t l . 0 2 5  

if 4425<-4< 7225, DN1 = -1.005, DN2 = +1.005 

i f  722% -A< 11 025, DNl = -0.995, DN2 = +0.995 

i f  4>110?5, DNl = -0.987, DN2 = tO.987 
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3.8 SAMPLE PROBLEM 3 

3 .8 .  1 Problem Descrintion 

A uniform cylinder under semisinusoidal time dependent loading is _ .  
considered. 

v = 1/6 -- 
a, = 1 

37.5r-j - h, = 1 
Pinned Pinned Eo = 1 

- 1  )I----- 184.4 4 mo - 
Stiffness Parameters 

BBB = 12.0925 x lo6 

DDD = 1 6 . 5 6 ~  lo4 

Mass properties DMMl = 3.49 x 

No thermal loading 

No elastic foundation 

No external damping 
(pressure normal) 

Pressure loading 

if TU<. 003113 

PPPN = 1000 Sin (1003 TU) 

if TU 2.003113 

PPPN = 0 . 0  
PPPH = PPPF = 0.Q 
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3 . 8 . 3 .  Function Subprogram8 Uecd 
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3.9 SAMPLE PROBLEM 4 

3.9. 1 Problem Description 

The :lpollo-lilce shell of  sample problem 1, Section 3.7  is  now subjected 
to hydrodynamic pressures  compacted from a rigid shell solution. 

A 

-411 the input parameters a r e  the same as sample problem 1 except 
for  the subroutine describing pressures ,  

Vo = 360 in. / s  

R, = 175.6 in, 

.Initial impact velocity 

Radius of curvature 

= 62, 5 / 1 7 2 8 0  $/in. 3 Fluid denshy 

Weight of body 

p,. 

WT = l 0 , O O O  

inside \vetted region 

p q 7 n 3 / 2 R  c ’/‘ 11 - y ( 2  - 3r 

l / 2 (1  - r 2 / a 2 p 2 ( 1  f Y  )* 
P P P N  = 

llt 

- 1 6 7 -  



outside wetted region 

PPPN = 0.0 

also 

PPPH = PPPF = 0.0 

The mass  properties of the Apollc-like shell. 

DMM1 = 1.4648 x 10-3(tf) t 4. 7443 x l oo5  

where 

A = k2 t 5625 - 2 ( 7 5 ) 6  COS e 

A<422ii tf = 0 .05  

4225<.A<7225 tf = 0.03  

7225<A<11025 'tf = 0.02 

A >11025 tf = 0.012 



3.9.2 Data Sheets 
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3 . 9 . 3  Function Subprogram Used 
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3.10 ERROR INDICATIONS, PITFALLS, RECOMMENDATIONS 

Several of the e r r o r  indications resulting from improper data input 
have already been discussed. To reiterate, they were: 

1. -4 bad index on a DECRD card (Section 3.5.1) 

2. Omission of the negative sign on the las t  card of a data a r ray  
(Section 3. 5. 1) 

3. Omission of some o r  a l l  of the title cards  (Section 3. 3.1). 

One should be very careful to check the output from the program to see 
that i t  corresponds to the input that he entered. 
check of input data may prevent a wasted run on the digital computer. 

Better yet, an independent 

The amount of data entered by the DECRD routine is relatively small 
but such things a's sign convention, angle measure-ments, and compatibility 
of units a r e  common pitfalls. 

Many of the needed parameters a r e  supplied to the program by use of 
FUNCTION subprograms. 
3. 6, 3,  3 .  7. 3, 3.8. 3 and 3.9. 3 should be studied. 
below. 

Before writing such subprograms, Section 3.4, 
-4 check l ist  i s  given 

1. -4re the FUNCTION and ENTRY names spelled the same a s  those 
given in the table of Section 3.4? 

2. Does the number of arguments agree with the number in  the 
calling program? Note that ENTRY DDD has just one argument, 
(ZTA), and the pressure functions for the Dynamics version 
require the added argument TU. 

3. Has the FUNCTION name been-used to return the function value to 
the calling program even when reference was made to an ENTRY 
name ? 

4. Does the FUNCTION subprogram contain at  least one RETURN 
statement and a n  END statement? 

5. If arlrlitional data were needed to define the function have the data 
ciirrls been included with the data deck? ' 
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3 . 1 1  PROGRAM LISTINGS FOR STATIC YERSION 

3. l l a  Main Program 

i ! 
i 
I 
! 

I i 
I 
i 

! 

i 
I 

I 

I *  a! .! 

-. 
4 

C 
'a: 
a 

i !  

J C  I C  

- 177 * 



i 
(r. 

I- 
-;- - 

' I  

3 
a " 

J' 
- 1  

"i I- 

q 
*! 

i 

K 

I 

I 

j 

i 
I 

I 

i 

I 

! 
I 

; 
! 

i 

I 
I 

4 

I 

I 
! 

i a 
I 
I 

I U  

- 178 - 



I 

i 

1 

1 

I 

1 

I 

i 
I 

i 
i 
! 

C 

C 

I1 

e 

-1 

D 
3 

- 
a 

'C ' 
N 

1 
I 
I 

Y z 
* 

iJ 
a 
I- 
U s 

I 

I 

lu"i J 

I 
I 

i 

! 
! 

1 

I 

Ci 
ZI 

I" ' 

- 179 - 



3 . 1  lb DATLNK Subroutine (DLNK) 
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3. l l c  DATLD Subroutine (LOAD) 
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3. l l g  RSLT Subroutha (BNDRY) 
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3.12 PROGRAM LISTRUGS FOR DYNIuLfcs m m  
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3.12k ZMTRX Subroutine (SMD) 
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3.13 PROGRAM NOMENCLATURE 

49 
A0 

A0 (50, 50) 

a Reference length 

Boundary matrix, see Equation (1.46). 
Section 1.8 

A1 (50, 58) 

ALFl 

ALF2 

ALMO (5, 5) 

ALM1 (5, 5) 

A W N  (5 ,  5 )  

ANX 

AXL 

@ 
B++ 

BO (50, 50)  

B1 (50, 50) 

BBB 

Another designation for A0 (SO, 50) . 

ENTRY to function subprogram TMP1, 
used to define the coefficient of 
thermal  expansion for the stress 
calculations of layer  one 

As A w l ,  for layer  two 

3oundary displacement matr ix  at the 
first meridional station, Equation (1.36). 
0th harmonic 

X O  

-4s ALMO ( 5 ,  5 )  for  the 1st harmonic . 

As ALMO (5, 5 )  for  the terminal  
boundary 

XN 

Angle between the generator and axis 
of revolution; cone-cylinder option of 
CE6M. 

Axial surface length 

Modified B mat r i s  for dynamic 
response, Equation (1.56). Section 1.9 
. 

BO Boundary matrix; see Equation (I. Id,  
Section 1.8 

Same as BO (50, So) 

FUNCTION rubprograin to define 
membrane stiffness, Equation (1.281. 



BCD (36) 

BCIB 

BCIT 

BFCN 

BMTX (160) 

BN (50, 50 )  

BNDTB (1 7 )  

BNDTX (1 7 )  

0 
CO, C1 (50 ,  5 0 )  

CEXT 

CN (50, 50) 

CODIhAA 

CQEFC 

@ 
DATLD 

BN 

CO 

CN 

Three title c8rdr r e rd  in executive 
program 

Boundary condition indicator for tha 
terminal boundary; entered with the 
general data, GDA, See Section 2-8, 

-4s BCIB, for the initial boundary 

Deck name for the static vcraioo of 
subprogram, BBB 

COMMON a r r a y  which include.' 0 ,  A 
and 1 boundary matrices for the 0th 
and 1st harmonics 

Terminal boundary matrix; Equation 
[ 1.46), Section 1-8 

Special boundary a r r a y  for atation N 
read with the geometry data, GMDA. 
See Sections 1.8, 2-8, 

A s  BNDTB, for station one 

Boundary matrices; see Equation (I.&), 
Section 1.8, 

Number of t ime cycles desired, Read 
with GD-4 data, Section 3-3-2. 

Terminal boundary matrix, Equation 
( 1-46), Section 1.8. 

Parabolic curve fitting mabrautixmt 
see Section 3.5.4. 

Stiffness coeffic.ient array 88t op in 
the DATLYR subroutbe, 

Subroutine used to ret up prerr9ie 
loads 



DATLNK 

DATLYR 

DBBDD 

Dcc1, 2, 3 

DCK1, 2, 3 

DCM1, 4 

DDD 

DECRD 

DEL 

DELT 

DELTH 

DKDMP 

DKK1, 2, 3 

DMASS 

DMM1.4 

Sub-executive subroutine which 
monitors CEaM, DATLYR and 
DATLD 

Subroutine which rets up the stiffness 
coefficient array, WEFC 

L.t,-k name for *he Dynamic6 version 
of s rhprogram . 'BB 

External damping cocffia.!+.rita found in 
the COEFC array 

Dm 

Km Spring coefficients, in CO-C 

Mass coefficients of translatien and 
rotation, in a E F C  

Mm 

A 

i 

ENTRY to function subprogram BBB. 
used to define the bending stifher. 
coefficients of the a E F C  array 

Data read subroutine; see Section 3,S.l 

Interval size between meridional 
stations 

Time increment (seconds), reed with 
GDA data. See Section 3-3.2, 

Interval size between circumferential 
stations. Cons- = 2.. 

Deck name for the Dynamics deck 
which sets up spring and damping 
coefficients of the array CdEFC 

FUNCTION and ENTRY points to the 
subprogram which sets up spring 
coefficient 

Deck name for Dynamics dock which 
forms the mil88 coefficient8 

, 

FUNCTION and ENTRY poiats- of deck 
DMASS 



DMP1, 2, 3 

DN1 

DM2 

DPRSS 

DTMP 

DYLMN 

EO 

2 

EM 

EMTT 

EN 

ENF 

ENTIJ 

ENTRY points to deck DKDMP to ret 
up the translation81 d8mpbng 
cwfficicnts,. -. . .- .. 

ENTRY point to  function .subp.-ogram. 
.EIl. Sets up distance from neutral 
axir of the first layer ured in a t r t r r  
ealculatiana. 

As DN1 for the second stresaes 

Deck name for the Dynamics vcraion 
of PPPN which supplies the pressure 
loadings 

Deck name for the Dynamics vcrrion 
of ENTT which gives the temperanare 
load and moment 

Subroutine subprogram in the Dynamic8 
dtck which sets up the L, M and N 
matrices of Equation (1.51)* %&a 1.9 

Reference Young' 8 M & h  EO 

FUNCTION subprogram8 U 8 e d  to 
define the moduli of elasticity for the 
two layers at which stresses art 
desired 

Number of radii entered for the dis- 
crete point geometry opti- 

ENTRY point to subprogram ENTT; 
used to set up temperature mbments 

Number of meridional 8t&m8 

Number of Fouriar h a r m d i c s  where 
the first one is the 8th one 

- f . .  

' 

Number of circumferemtirf stations, 
intarnally set at ninety 



ENTT 

0 
F(50, 50) 

FGHPE 

FPRNT 

@ 
G (50,  50) 

G** 

GAMA 

GDA 

GEOM 

GIN 

GMDA 

GMI 

GMTX 

F 

FUNCTION rubprogram which re$$ , 
the &lut of the tem&rature loid, 

Equation (1.15). Section 1-6 tT' 

Matrix of equilibrium Equation (1.341. 
Section 1.7 

Subroutine which forms the F, G and 
H matrices of Equation (1.34). In the 
Statics version the force matrix PE is 
also set up here. 

Fourier component print values, read 
with CDX data. See Section 3. 3.2. 

G Matrix of equilibrium Equation (1,341, 
Section 1.7 

* -e 
Modified g matrix for dynamic 
response, Equation ( 1,56), Section 1.9 

gi, j 

Y P ' I P  

General data array, read by the 
executive pr ograrn 

Geometry subroutine 

Geometry indicator r tad  with GMD.4 
data; see Section 2.5 

The geometry data array; see Section 
3.3.3 

Dynamics subroutine subprogram 
which modifies the R and pr matrices 
and forms the P and X nmtriccm of 
Equition (1.60), !kction 1, IO 



X-9, 50) 

HO 

0 
I 

IFDYN 

IFGFG 

IFLG 

IFMX 

. IRSFG 

IRTE 

0 
JPATH 

QD 
KFCN 

KPATH 

H Equilibrium matrix of Equation (1.34), 
Section 1.7 . .  
Reference thickness hO 

Station number within each block of 
stiffness coefficients, CQEFC, in 
PANDX subroutine 

PANDX flag which determines when 
L, M and N matrices of the Dynamics 
routine have been completed 

PANDX flag to determine entry into 
the FGHPE subroutine 

Stiffness coefficient block indicator; 
used in PANDX 

PANDX flag which shows whether the 
PE (force) matrix is complete 

PANDX flag for boundary computations 

PANDX indicator far &?rst or last 
dation within ;L cc.. fiicient block 

Path indicator through the Fourier 
harmonic loop of PANDX; used to skip 
setting up the boundary conditions and 
the FGHPE subroutine 

Deck name for the Statics version of 
subprogram DKKl 

Path indicator through the Fourier 
harmonic loop of PANDX; used to skip 
boundary conditions and the DYLbQN 
subroutine 
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KPTR, K P T W  

KZTR, KZTW 

Q 
L (50 ,  50) 

LLO (5) 

LLLN ( 5 )  

@ 
M (50,  50 )  

M (THETA) 

M(XI, THETA) 

MFE 

MM 

MMN 

MTP 

Variable tape numbers 10 o r  12 u8td 
in the Dynamics version for storing P 
and X matrices by rubroutine GMTX 

Variable tape number 8 or  11 used in  
GMTX for preserving the three 
previous solution matrices (2) at each 
ticat: interval 

Li Matrix used in the Dynamic.s version 
to modify the g matrix, Equation ( 1.51), 
Section 1.9 

9 0  Initial boundary, 1 matrix; Equation 
(1.38). Section 1.7 

Terminal boundary, matrix 1N 

Mi As L ( 5 0 ,  5 0 )  

Bending moment per unit length in  the  
cir cum fer entia1 direction ’ M6 

Bending moment per unit length in the 
meridional direction 

hq € 

Bending moment; shear Gbe 

Current temperature moment8 at a 
given meridional station and for k 
harmonics 

Absolute station number in PANDX 
subroutine 

Station number within block of load8 
in PANDX 

First derivative of the temperature 
moment r 



el 
N 

N (50, 50) 

N (THETA) 

N (XI) 

N (XI, THETA) 

NNF 

NTH 

0 
OMGO ( 5 ,  5 )  

OMG1 (5, 5 )  

OMGN ( 5 ,  5) 

@ 
P (50, 50) 

PANDX 

PE ( 5 0 )  

Fixed point form of EN, number of 
meridional rtationr 

Ni A s  L (50, 50) 

Membrane force , ci r cum fe r entia1 Ne 

Membrane force, meridional 

Membrane shear force 

Fixed point form r f  ENF, number of 
Fourier har mvnic s 

te R 
n 

Sl  

P 

P 

Fixed point form of ENTH, number of 
circumferential stations = 90 

Boundary force matrix for the 0th 
harmonic; Equation (1.36), Section 1.7 

A s  GMGO ( 5 ,  5 )  for the 1st harmonic 

A s  OMGO ( 5 ,  5)'  for the terminal 
boundary 

Matrix of Equation (l.6O), Section 1.10 

Sub-executive subroutine which directs 
the formation of the various matrices 
needed in computing the P and X 
matrices of Equation (1.60), Section 
1.10. This subroutine calls the 
RSLT, FGHPE, DYLMN and GMTX 
subroutines, the latter two in the 
Dynamic s ver rion only. 

Force matrix of Equation (1.34), 
Section 1.7 
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PEL 

PFCN 

PFE 

PFLAG 

PHlO 

PHIN 

PHI (THETA) 

PHI 

PHS 

PHT 

PN 

POI 

Pars 1 

m1s2 

PPPF 

PPPH 

Meridional distance tp  a station f rom 
the initial rt8tion 

Deck name for the Statics version of 
subroutine PPPN 

Four ie r  component for load in  the 
meridional direction 

Pr in t  flag, read with.GDA, general  
data. See Section 3. 3.2. 

Initial opening angle from ver:ical 
axis for sphere o r  toroid 

Final opening angle from vert ical  
axis  for sphere o r  toroid 

Rotation in  the circumferential 
direction 

Rotation in the meridional direction 

Program name for PHI (XI) 

P rogram name for PHI (TI1ET-4) 

Four ie r  component for load in  the 
normal  direction 

Poisson's ratio 

ENTRY point t o  function subprogram, 
€11. 
in the s t r e s s  calculations for the f i r s t  
laye r. 

Sets up Poisson's ratio for use  

As -IS1 for the second rtrcrstr 

ENTRY point to function subprojgrani, 
PPPN. Definer: the meridional 
prerrure. 

As PPPF for circumferential  
prrrruru 



PPPN 

PTH 

@ 
Q (THETA) 

0 
R 

R ( 5 0 ,  50) 

R.41 

RC 

RCURV 

RCURZ 

RHOX 

RLPT 

RQFF 

RSLT 

FUNCTION subprogram for pressure  

cbnvcntion. 
-1padings. See Section 1.5 for sign 

Fourier component for load in  the 
c ir cum fer entia1 direction 

Transverse force per unit length in 
the circumferential direction 

Q, 

Transverse force per unit length in 
the meridional direction Os 

r 

R 

P 

Normal distance from axis to shell 

Boundary matrix of Equation (1.46), 
Section 1.8 

Radius of cone or  cylinder at station 1 

Radius of curvature of sphere o r  
toroid 

Input values of rr .etiJimal ;-adius of 
curvature 

Input values of circumferential radiu6 
of curvature 

R / -40 

Discrete radii for general shell sha2t 

Offset distance of center of Curvature 
from axis of revolution, for toroid8 

Subroutine which Compute6 the 
boundavy matrices for the P and X 
matrices  



s ( 6 0 ,  5 0 )  

scni, 2" 3 

scn1, 2, 3 

scci 1, 2, 3 

SCG 1.3 

SChITSI 

SCXITTH 

SCNTSI 

SCSTTH 

SIG 0 

SIG (THETA) 

SIC [THETA, ETA) 

SIC (XX) 

SIG (XI. ETA) 

SIC (XI, THETA) 

SUMS 

Boundary matrix at Equation (1  46), 
Section 1.8 

Membrane stiffnear coefficients 

Bending s ti f fne s B c oe fficient I 

Shear stiffness coefficients 

Shec.r t w i s t  stiffness coefficient 

Mzridional thermal moment 
coefiicients 

Circumferential thermal moment 
c oc fficient s 

Meridional thermal load coefficieztr 

Circumferential thermal load 
coefficients 

R e  fer enc e et r e s I 

Cir cumferential utreus 

Cir cum fe rential t ranrvet  se rhear 
stre68 . 

Meridional t ranrver  se shear rtr e86 

In-plane shear rtrerr 

Subroutine which doer the Fourier 
summing for the aeflectionr urd 
rotationr, computer the internal load, 
and, i n  the Static verrion, rtrerrm 

8 
TCTR Time cycle numbor 



TFCN 

TFE 

THT 

TMP1, 2 

TTFl .  2 

TTP 

TU 

0 
U 

0 
V 

8 
W 

W (THETA) 

t 

ue 

Deck name for the Statics version of 
funccion subprogram, ENTT 

Current temperature load at a given 
meridional station and for k h a r r o n i c s  

Circumferential angle THETA 
(degrees) at which print-outs of 
results a r e  desiied. (5  permitted) 

FUNCTIaN subprogram6 used to 
define the temperature for the two 
layers  at which stresses are desired 

9eck name; for function subprograms, 
TMPl and TMP2,  respectively 

First derivative of the temperature 
loads 

Current t ime 

Meridional displacement; see 
Figure 1.2 

Circumferential displacement; see 
Figure 1.2 

w Normal displacement; see Figure 1.2 

Circumferential curvature, print 
heading 

Meridional curvature, print heading 

Veloci t ies  

F i r s t  derivative of meridional 
curvature 8 

"s 
d U' 
d t  
- 
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WFEX 

WTHX 

@ 
x (50) 

XI 

XIPT 

ZMT'RX 

ZP 

ZPP, ZPPP 

Z T A  

ZX ( 5 0 )  

Program name for W (XI) 

Program name for W (THETA) 
wf . 

X Matrix of Equation (1.62). Section 1.10 

k Meridional distances to stations 
computed in GEOM 

Discrete XI distances or a r c  lengths 
a r r a y  cntered with GMDA 

2 Solution matrix, Equation (1.38). 
Section 1.7 

Subroutine which solves for the Z 
matrix using the P and X matrices 

Solutions for previc*2.?d t i z e  cycle 

Solution matrices for the secor:d and 
t h i r d  previous cycles 

5 Circumferential distance to a station 

Another name for 2 (SO) 


